4.4 Article

Initial conditions and their effect on invasion velocity across heterogeneous landscapes

Journal

BIOLOGICAL INVASIONS
Volume 11, Issue 6, Pages 1247-1258

Publisher

SPRINGER
DOI: 10.1007/s10530-008-9330-2

Keywords

Biological invasions; Network theory; Graph theory; Epidemiology; Diffusion; Cellular automaton; Landscape ecology

Ask authors/readers for more resources

Accurate, time dependent control options are required to halt biological invasions prior to equilibrium establishment, beyond which control efforts are often impractical. Although invasions have been successfully modeled using diffusion theory, diffusion models are typically confined to providing simple range expansion estimates. In this work, we use a Susceptible/Infected cellular automaton (CA) to simulate diffusion. The CA model is coupled with a network model to track the speed and direction of simulated invasions across heterogeneous landscapes, allowing for identification of locations for targeted control in both time and space. We evaluated the role of the location of initial establishment insofar as it affected the pattern and rate of spread and how these are influenced by patch attributes such as size. Our results show that the location of initial establishment can significantly affect the temporal dynamics of an invasion. Traditional network metrics such as degree and measures of topological distance were insufficient for predicting the direction and speed of the invasion. Our coupled models allow the dynamic tracking of invasions across fragmented landscapes for both theoretical and practical applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available