4.3 Review

Using input minimization to train a cerebellar model to simulate regulation of smooth pursuit

Journal

BIOLOGICAL CYBERNETICS
Volume 101, Issue 5-6, Pages 339-359

Publisher

SPRINGER
DOI: 10.1007/s00422-009-0340-7

Keywords

Cerebellum; Smooth pursuit; Computational model; Learning

Ask authors/readers for more resources

Cerebellar learning appears to be driven by motor error, but whether or not error signals are provided by climbing fibers (CFs) remains a matter of controversy. Here we show that a model of the cerebellum can be trained to simulate the regulation of smooth pursuit eye movements by minimizing its inputs from parallel fibers (PFs), which carry various signals including error and efference copy. The CF spikes act as learn now signals. The model can be trained to simulate the regulation of smooth pursuit of visual objects following circular or complex trajectories and provides insight into how Purkinje cells might encode pursuit parameters. In minimizing both error and efference copy, the model demonstrates how cerebellar learning through PF input minimization (InMin) can make movements more accurate and more efficient. An experimental test is derived that would distinguish InMin from other models of cerebellar learning which assume that CFs carry error signals.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available