4.3 Article

Interaction of human heat shock protein 70 with tumor-associated peptides

Journal

BIOLOGICAL CHEMISTRY
Volume 390, Issue 4, Pages 304-312

Publisher

WALTER DE GRUYTER GMBH
DOI: 10.1515/BC.2009.038

Keywords

antigen presentation; antigenic peptide; anti-tumor T cell response; heat shock protein 70; molecular chaperone; peptide binding

Funding

  1. Deutsche Forschungsgemeinschaft [SFB455]

Ask authors/readers for more resources

Molecular chaperones of the heat shock protein 70 (Hsp70) family play a crucial role in the presentation of exogenous antigenic peptides by antigen-presenting cells (APCs). In a combined biochemical and immunological approach, we characterize the biochemical interaction of tumor-associated peptides with human Hsp70 and show that the strength of this interaction determines the efficacy of immunological cross-presentation of the antigenic sequences by APCs. A fluorescein-labeled cytosolic mammalian Hsc70 binding peptide is shown to interact with human Hsp70 molecules with high affinity (K-d=0.58 mu M at 25 degrees C). Competition experiments demonstrate weaker binding by Hsp70 of antigenic peptides derived from the tumor-associated proteins tyrosinase (K-d=32 mu M) and melanoma antigen recognized by T cells (MART-1) (K-d=2.4 mu M). Adding a peptide sequence (pep70) with high Hsp70 binding affinity (K-d=0.04 mu M) to the tumor-associated peptides enables them to strongly interact with Hsp70. Presentation of tumor-associated peptides by B cells resulting in T cell activation in vitro is enhanced by Hsp70 when the tumor-associated peptides contain the Hsp70 binding sequence. This observation has relevance for vaccine design, as augmented transfer of tumor-associated antigens to APCs is closely linked to the vaccine's efficacy of T cell stimulation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available