4.6 Article

Influence of legacy phosphorus, land use, and climate change on anthropogenic phosphorus inputs and riverine export dynamics

Journal

BIOGEOCHEMISTRY
Volume 123, Issue 1-2, Pages 99-116

Publisher

SPRINGER
DOI: 10.1007/s10533-014-0055-2

Keywords

Phosphorus; Legacy nutrients; Land use; Nutrient budget; Climate change; Eutrophication

Funding

  1. National Natural Science Foundation of China [41371010]
  2. Zhejiang Provincial Natural Science Foundation of China [LY13D010002]
  3. Chinese National Key Technology RD Program [2012BAC17B01]

Ask authors/readers for more resources

A quantitative understanding of riverine phosphorus (P) export in response to changes in anthropogenic P inputs (NAPI), land use and climate is critical for developing effective watershed P control measures. This study indicated that annual riverine TP export for the six catchments of the Yongan River watershed in eastern China increased 4.1-30.3-fold over the 1980-2010 period. Increased riverine TP export resulted from a 61-85 % increase in NAPI and a 2.6-14.6-fold increase in riverine export fraction of NAPI due to 36-43, 30-125, and 65-76 % increases in developed land area (D%), drained agricultural land area (DA%), and storm events, respectively. For the 31-year cumulative record, 1.6-14 % of NAPI was exported by rivers, 40-64 % was stored in the upper 20 cm of agricultural soils, and 30-55 % was retained in other landscape positions. An empirical model that incorporates annual NAPI, precipitation, D%, and DA% accounted for 94 % of the variation in annual riverine TP fluxes across the six catchments and 31 years. The model estimated that NAPI and legacy P contributed 42-92 % and 8-58 % of annual riverine TP flux, respectively. The model forecasts an 8-18 % increase in riverine TP flux by 2030 due to a 4 % increase in precipitation with no changes in NAPI and land use compared to the 2000-2010 baseline condition. Enhanced export of NAPI and legacy P by changes in land use and climate will delay the decrease in riverine P flux in response to NAPI reductions and should be considered in developing and assessing watershed P management strategies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available