4.6 Article

Incorporating urban infrastructure into biogeochemical assessment of urban tropical streams in Puerto Rico

Journal

BIOGEOCHEMISTRY
Volume 121, Issue 1, Pages 271-286

Publisher

SPRINGER
DOI: 10.1007/s10533-013-9914-5

Keywords

Urbanization; Tropical; Impervious surface; Sewer pipes; Water pipes; Stream chemistry

Funding

  1. Lotic Intersite Nitrogen eXperiment II (LINX II) [DEB-0111410]
  2. NSF Luquillo Long-Term Ecological Research Program [DEB-0620910]
  3. Direct For Biological Sciences
  4. Emerging Frontiers [1065286] Funding Source: National Science Foundation
  5. Division Of Environmental Biology
  6. Direct For Biological Sciences [1239764] Funding Source: National Science Foundation

Ask authors/readers for more resources

The influence of built urban infrastructure on stream chemistry was quantified throughout the drainage network of the tropical Rio Piedras watershed, San Juan metropolitan area, Puerto Rico. Urbanization and failing domestic wastewater infrastructure appeared to drive changes in surface water chemistry throughout the watershed. Mean baseflow concentrations of chloride (Cl), ammonium (NH4), dissolved organic carbon (DOC), dissolved organic nitrogen (DON), and phosphate (PO4) all increased with urban infrastructure, while nitrate (NO3) and dissolved oxygen (DO) decreased. These patterns in stream chemistry suggest that sewage effluent from failing or illegally connected sewer pipes has a major impact on surface water quality. Concentrations of Cl, DO, and NH4 in stream water were most strongly related to sewer pipe volume, demonstrating the tight connection between urban infrastructure and stream chemistry. The loading and transformation of NO3 and NH4 were modeled along the river network and NH4 loading rates from the landscape were strongly related to urban infrastructure, whereas NO3 loading rates showed only weak relationships, highlighting the importance for incorporating NH4 dynamics into river network models in urban environments. Water quality appears to be severely impacted by sewage in this tropical basin, despite large investments in built infrastructure. The high temperatures in the Rio Piedras exacerbate water quality problems by reducing saturation DO levels in streams, and intense rainstorms tax the ability of built infrastructure to adequately manage overland flows. These problems are likely typical of much of the urbanized humid tropics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available