4.6 Article

Mercury-organic matter relationships in pre-pollution sediments of thermokarst lakes from the Mackenzie River Delta, Canada: the role of depositional environment

Journal

BIOGEOCHEMISTRY
Volume 107, Issue 1-3, Pages 149-164

Publisher

SPRINGER
DOI: 10.1007/s10533-010-9543-1

Keywords

Arctic; Mercury; Recent sediments; Rock-Eval; Thermokarst lakes; Algae

Funding

  1. Environment and Health Program
  2. Earth Science Sector (Natural Resources Canada)
  3. ArcticNET

Ask authors/readers for more resources

This study investigates the influence of organic matter (OM) on the historical variations of Hg in sediments from two closely-situated Canadian Arctic lakes, prior to the advent of Hg pollution inputs. Because of variable landscape evolution in the Mackenzie River Delta over the past 1-3 millennia, the lakes provide distinctly different histories of OM sources, types, and degree of aquatic productivity (i.e., depositional environments). They also differ significantly in their pre-1900 Hg concentration profiles. When labile, kerogen-like carbon (S2) from aquatic sources (diatoms and other unicellular algae) increased between 750 and 1900 A.D. in the more productive lake (Nesbitt), Hg concentrations also increased by ca. 50%. In contrast, S2 carbon concentrations in the nearby organic-poor lake (Big Lake) were several-times lower than in Nesbitt and decreased over the past millennium, while Hg concentrations showed no trend probably reflecting the stable input of clastic material from tundra soils. The contrast between lakes suggests that OM derived from unicellular algae is more effective at scavenging Hg than OM from terrestrial plants or aquatic macrophytes, possibly because of a higher content of labile, sulphur-rich compounds, high particle surface area and its dispersion throughout the water column. The results indicate that, in the absence of anthropogenic Hg inputs, increasing phytoplankton productivity and Hg scavenging alone can lead to significant increases in the Hg content of lake sediments. This finding is consistent with the hypothesis that increasing lake productivity because of climate warming during the twentieth century has confounded the interpretation of recently increasing Hg levels in northern lake sediments as being unequivocally due to anthropogenic Hg deposition. This study also suggests that sedimentary TOC by itself is a poor and sometimes misleading indicator of possible changes in the source and quality of OM in aquatic systems, which can have a major impact on Hg concentrations in sediments.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available