4.5 Article

The role of antibiosis and induced systemic resistance, mediated by strains of Pseudomonas chlororaphis, Bacillus cereus and B. amyloliquefaciens, in controlling blackleg disease of canola

Journal

BIOCONTROL
Volume 56, Issue 2, Pages 225-235

Publisher

SPRINGER
DOI: 10.1007/s10526-010-9324-8

Keywords

Biocontrol; Induced systemic resistance; Antibiosis; Tn5 mutant; Pyrrolnitrin

Categories

Funding

  1. Natural Sciences and Engineering Research Council (NSERC)

Ask authors/readers for more resources

Antibiotic-producing Pseudomonas chlororaphis strains DF190 and PA23, Bacillus cereus strain DFE4 and Bacillus amyloliquefaciens strain DFE16 were tested for elicitation of induced systemic resistance (ISR) and direct antibiosis in control of blackleg in canola caused by the fungal pathogen Leptosphaeria maculans. Inoculation of bacteria 24 h and 48 h prior to the pathogen was crucial for disease control. In systemic induction studies, the bacteria and culture extracts had lower but significant suppression of the blackleg lesion. When inoculated at the same wound site as the pathogen pycnidiospores, the bacterial culture extracts had significantly higher reduction of blackleg lesion development. However, localized plant defense-related enzyme activity at the site of inoculation was not induced by all the bacteria. Direct antifungal activity at the infection site seems to be the dominant mechanism mediating control of L. maculans. A Tn5-gacS mutant of strain PA23 exhibited a complete loss of antifungal and biocontrol activity, which was restored upon addition of the gacS gene in trans. Interestingly, a phenazine-minus derivative of PA23 that produces elevated levels of pyrrolnitrin exhibited the same or higher blackleg disease suppression compared to the wild type. These findings suggest that direct antifungal activity, possibly mediated by pyrrolnitrin, and some low level of induced systemic resistance is involved in P. chlororaphis biocontrol of blackleg.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available