4.5 Article

Study of bradykinin conformation in the presence of model membrane by Nuclear Magnetic Resonance and molecular modelling

Journal

BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES
Volume 1788, Issue 3, Pages 708-716

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.bbamem.2008.12.019

Keywords

Bradykinin; Monolamellar liposome; NMR; DOPC/DOPE

Funding

  1. University of Siena

Ask authors/readers for more resources

The conformation of bradykinin (BK), Arg1-Pro2-Pro3-Gly4-Phe5-Ser6-Pro7-Phe8-Arg9, was investigated by Nuclear Magnetic Resonance (NMR) spectroscopy and Monte Carlo simulation in two different media, i.e. in pure aqueous solution and in the presence of phospholipid vesicles. Monolamellar liposomes are a good model for biological membranes and mimic the environment experienced by bradykinin when interacting with G-protein coupled receptors (GPCRs). The NMR spectra showed that lipid bilayers induced a secondary structure in the otherwise inherently flexible peptide. The results of ensemble calculations revealed conformational changes occurring rapidly on the NMR time scale and allowed for the identification of different families of conformations that were averaged to reproduce the NMR observables. These structural results supported the hypothesis of the central role played by the peptide C-terminal domain in biological environments, and provided an explanation for the different biological behaviours observed for bradykinin. (C) 2009 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available