4.5 Article

Explaining the enigmatic KM for oxygen in cytochrome c oxidase: A kinetic model

Journal

BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS
Volume 1807, Issue 3, Pages 348-358

Publisher

ELSEVIER
DOI: 10.1016/j.bbabio.2010.12.015

Keywords

Cytochrome c oxidase; Kinetic model; Membrane potential; Oxygen affinity; Mitochondria; Metabolic control analysis

Ask authors/readers for more resources

We present a mathematical model for the functioning of proton-pumping cytochrome coxidase, consisting of cyclic conversions between 26 enzyme states. The model is based on the mechanism of oxygen reduction and linked proton translocation postulated by Wikstrom and Verkhovsky (2007). It enables the calculation of the steady-state turnover rates and enzyme-state populations as functions of the cytochrome c reduction state, oxygen concentration, membrane potential, and pH on either side of the inner mitochondrial membrane. We use the model to explain the enigmatic decrease in oxygen affinity of the enzyme that has been observed in mitochondria when the proton-motive force is increased. The importance of the 26 transitions in the mechanism of cytochrome oxidase for the functional properties of cytochrome oxidase is compared through Metabolic Control Analysis. The control of the Km value is distributed mainly between the steps in the mechanism that involve electrogenic proton movements, with both positive and negative contributions. Positive contributions derive from the same steps that control enzyme turnover rate in the model. Limitations and possible further applications of the model are discussed. (C) 2011 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available