4.5 Article

Competition between linear and cyclic electron flow in plants deficient in Photosystem I

Journal

BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS
Volume 1777, Issue 9, Pages 1173-1183

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.bbabio.2008.04.041

Keywords

linear electron flow; cyclic electron flow; photosystem I; photosystem II; PSI-D1; PSI-E1; Arabidopsis thaliana

Funding

  1. BB/C508877/1
  2. Biotechnology and Biological Sciences Research Council [BB/C508877/1] Funding Source: researchfish

Ask authors/readers for more resources

Photosynthetic electron transport can involve either a linear flow from water to NADP, via Photosystems (PS) II and I or a cyclic flow just involving PSI. Little is known about factors regulating the relative flow through each of these pathways. We have examined photosynthetic electron transport through each system in plants of Arabidopsis thaliana in which either the PSI-D1 or PSI-E1 subunits of PSI have been knocked out. In both cases, this results in an imbalance in the turnover of PSI and PSII, such that PSII electron transport is limited by PSI turnover. Phosphorylation of light-harvesting complex II (LHCII) and its migration to PSI is enhanced but only partially reversible and not sufficient to balance photosystem turnover. In spite of this, cyclic electron flow is able to compete efficiently with PSI across a range of conditions. In dark-adapted leaves, the efficiency of cyclic relative to linear flow induced by far-red light is increased, implying that the limiting step of cyclic flow lies in the re-injection of electrons into the electron transport chain. Illumination of leaves with white light resulted in transient induction of a significant non-photochemical quenching in knockout plants which is probably high energy state quenching induced by cyclic electron flow. At high light and at low CO2, non-photochemical quenching was greater in the knockout plants than in the wildtype. Comparison of PSI and PSII turnover under such conditions suggested that this is generated by cyclic electron flow around PSI. We conclude that, when the concentration of PSI is limiting, cyclic electron flow is still able to compete effectively with linear flow to maintain a high Delta pH to regulate photosynthesis. (C) 2008 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available