4.4 Article

Elucidating the Mode of Action of a Typical Ras State 1(T) Inhibitor

Journal

BIOCHEMISTRY
Volume 53, Issue 24, Pages 3867-3878

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bi401689w

Keywords

-

Funding

  1. DFG
  2. DFG Forschergruppe [FOR 1979]
  3. Volkswagen Foundation
  4. Gerhard C. Starck Stiftung
  5. Bayerische Forschungsstiftung

Ask authors/readers for more resources

The small GTPase Ras is an essential component of signal transduction pathways within the cell, controlling proliferation, differentiation, and apoptosis. Only in the GTP-bound form does Ras interact strongly with effector molecules such as Raf-kinase, thus acting as a molecular switch. In the GTP-bound form, Ras exists in a dynamic equilibrium between at least two distinct conformational states, 1(T) and 2(T), offering different functional properties of the protein. Zn2+-cyclen is a typical state 1(T) inhibitor; i.e., it interacts selectively with Ras in conformational state 1(T), a weak effector binding state. Here we report that active K-Ras4B, which is prominently found to be mutated in human tumors, exhibits a dynamic equilibrium like H-Ras, which can be modulated by Zn2+-cyclen. The titration experiments of Ras with Zn2+-cyclen indicate a cooperatively coupled binding of the ligands to the two interaction sites on Ras that could be identified for H-Ras previously. Our data further indicate that as in state 2(T) where induced fit produces the substate 2(T)* after effector binding, a corresponding substate 1(T)* can be detected at the state 1(T) mutant Ras(T35A). The interaction of Zn2+-cyclen with Ras not only shifts the equilibrium toward the weak effector binding state 1(T) but also perturbs the formation of substate 1(T)*, thus enhancing the inhibitory effect. Although Zn2+-cyclen shows an affinity for Ras in only the millimolar range, its potency of inhibition corresponds to a competitive state 2 inhibitor with micromolar binding affinity. Thus, the results demonstrate the mode of action and potency of this class of allosteric Ras inhibitors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available