4.4 Article

Resonance Raman Spectroscopic Measurements Delineate the Structural Changes that Occur during Tau Fibril Formation

Journal

BIOCHEMISTRY
Volume 53, Issue 41, Pages 6550-6565

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bi500528x

Keywords

-

Funding

  1. Tata Institute of Fundamental Research
  2. Department of Biotechnology, Government of India
  3. Council of Scientific and Industrial Research, Government of India
  4. Government of India

Ask authors/readers for more resources

The aggregation of the microtubule-associated protein, tau, into amyloid fibrils is a hallmark of neurodegenerative diseases such as the tauopathies and Alzheimer's disease. Since monomeric tau is an intrinsically disordered protein and the polymeric fibrils possess an ordered cross-b core, the aggregation process is known to involve substantial conformational conversion besides growth. The aggregation mechanism of tau in the presence of inducers such as heparin, deciphered using probes such as thioflavin T/S fluorescence, light scattering, and electron microscopy assays, has been shown to conform to ligand-induced nucleation-dependent polymerization. These probes do not, however, distinguish between the processes of conformational conversion and fibril growth. In this study, UV resonance Raman spectroscopy is employed to look directly at signatures of changes in secondary structure and side-chain packing during fibril formation by the four repeat functional domain of tau in the presence of the inducer heparin, at pH 7 and at 37 degrees C. Changes in the positions and intensities of the amide Raman bands are shown to occur in two distinct stages during the fibril formation process. The first stage of UVRR spectral changes corresponds to the transformation of monomer into early fibrillar aggregates. The second stage corresponds to the transformation of these early fibrillar aggregates into the final, ordered, mature fibrils and during this stage; the processes of conformational conversion and the consolidation of the fibril core occur simultaneously. Delineation of these secondary structural changes accompanying the formation of tau fibrils holds significance for the understanding of generic and tau-specific principles of amyloid assembly.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available