4.4 Article

A Density Functional Theory Study on the Kinetics and Thermodynamics of N-Glycosidic Bond Cleavage in 5-Substituted 2′-Deoxycytidines

Journal

BIOCHEMISTRY
Volume 51, Issue 32, Pages 6458-6462

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bi300797q

Keywords

-

Funding

  1. National Institutes of Health [R01 CA101864, R01 DK082779-03S2]

Ask authors/readers for more resources

B3LYP/6-311+G(24,p)//B3LYP/6-31+G(d) density functional theory calculations were employed to explore the kinetics and thermodynamics of gas-phase N-glycosidic bond cleavage induced by nucleophilic attack of Cl' with a hydroxide ion in 5-substituted 2'-deoxycytidines. The results showed that, among the 5-substituted 2'-deoxycytidine derivatives examined [XdC, where X = H (dC), CH3 (medC), CH2OH (hmdC), CHO (fmdC), COOH (cadC), F (FdC), or Br (BrdC)], fmdC and cadC exhibited the lowest energy barrier and largest exothermicity for N-glycosidic bond cleavage. These results paralleled previously reported nucleobase excision activities of human thymine DNA glycosylase (hTDG) toward duplex DNA substrates harboring a thymine and 5-substituted cytosine derivatives when paired with a guanine. Our study suggests that the inherent chemistry associated with the nucleophilic cleavage of N-glycosidic bond constitutes a major factor contributing to the selectivity of hTDG toward 5-substituted dC derivatives. These findings provided novel insights into the role of TDG in active cytosine demethylation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available