4.4 Article

Transport Kinetics and Selectivity of HpUreI, the Urea Channel from Helicobacter pylori

Journal

BIOCHEMISTRY
Volume 50, Issue 40, Pages 8656-8663

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bi200887a

Keywords

-

Funding

  1. University of Iowa, Carver College of Medicine

Ask authors/readers for more resources

Helicobacter pylori's unique ability to colonize and survive in the acidic environment of the stomach is critically dependent on uptake of urea through the urea channel, HpUreI. Hence, HpUreI may represent a promising target for the development of specific drugs against this human pathogen. To obtain insight into the structure-function relationship of this channel, we developed conditions for the high-yield expression and purification of stable recombinant HpUreI. Detergent-solubilized HpUreI forms a homotrimer, as determined by chemical cross-linking. Urea dissociation kinetics of purified HpUreI were determined by means of the scintillation proximity assay, whereas urea efflux was measured in HpUreI-containing proteoliposomes using stopped-flow spectrometry to determine the kinetics and selectivity of the urea channel. The kinetic analyses revealed that urea conduction in HpUreI is pH-sensitive and saturable with a half-saturation concentration (or K-0.5) of similar to 163 mM. The extent of binding of urea by HpUreI was increased at lower pH; however, the apparent affinity of urea binding (similar to 150 mM) was not significantly pH-dependent. The solute selectivity analysis indicated that HpUreI is highly selective for urea and hydroxyurea. Removing either amino group of urea molecules diminishes their permeability through HpUreI. Similar to urea conduction, diffusion of water through HpUreI is pH-dependent with low water permeability at neutral pH.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available