4.4 Article

Duplex Formation at the 5′ End Affects the Quadruplex Conformation of the Human Telomeric Repeat Overhang in Sodium but Not in Potassium

Journal

BIOCHEMISTRY
Volume 48, Issue 47, Pages 11169-11177

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bi901063g

Keywords

-

Funding

  1. National Institutes of Health
  2. Clinical Center
  3. National Institute of Biomedical Imaging and Bioengineering

Ask authors/readers for more resources

Human telomeres contain numerous copies of the (TTAGGG)(n).(AATCCC)(n) repeated sequence With multiple TTAGGG repeats in 3' single-stranded overhangs. Single-stranded oligonucleotides consisting of four TTAGGG repeats can fold into various intramolecular quadruplex structures stabilized by quartets of guanines. The quadruplex Structures are believed to play a role in telomere functions and considered as targets for anticancer drug design. In an effort to create a more realistic model of telomeric DNA, we designed oligonucleotides containing a duplex region at the 5' end and four telomeric repeats in the 3' overhang. We applied CD spectroscopy and I-125 radioprobing to determine the conformation of the quadruplexes formed in the 3' overhangs. We found that in the presence of NaCl the conformation of the quadruplex changes with formation of the 5' duplex and depends on the position of the interface between the duplex and the 3' telomeric sequence. When the duplex region extended to the first T of the first TTAGGG repeat, both CD and radioprobing data are consistent with the parallel propeller conformation of the overhang. In the presence of KCl, formation of the duplex at the 5' end of DNA molecules did not change the fold of the quadruplex in the overhang which was interpreted as a mixture of two isomers of 3+1 conformation regardless of the duplex-overhang interface position. Our results demonstrate that the interface between the duplex and single-stranded overhang can affect the conformation of the telomeric quadruplex.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available