4.4 Article

Formation of an Unfolding Intermediate State of Soluble Chloride Intracellular Channel Protein CLIC1 at Acidic pH

Journal

BIOCHEMISTRY
Volume 47, Issue 44, Pages 11674-11681

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bi801147r

Keywords

-

Funding

  1. University of the Witwatersrand
  2. South African National Research Foundation [205359]
  3. South African Research Chairs Initiative of the Department of Science and Technology and National Research Foundation [64788]

Ask authors/readers for more resources

CLIC proteins function as anion channels when their structures convert from a soluble form to an integral membrane form. While very little is known about the mechanism of the conversion process, channel formation and activity are highly pH-dependent. In this study, the structural properties and conformational stability of CLIC1 were determined as a function of pH in the absence of membranes to improve our understanding of how its conformation changes when the protein encounters the acidic environment at the surface of a membrane. Although the global conformation and size of CLIC1 are not significantly altered by pH in the range of 5.5-8.2, equilibrium unfolding studies reveal that the protein molecule becomes destabilized at low pH, resulting in the formation of a highly populated intermediate with a solvent-exposed hydrophobic surface. Unlike the intermediates formed by many soluble pore-forming proteins for their insertion into membranes, the CLIC1 intermediate is not a molten globule. Acid-induced destabilization and partial unfolding of CLIC1 involve helix al which is the major structural element of the transmembrane region. We propose that the acidic environment encountered by CLICs at the surface of membranes primes the transmembrane region in the N-domain, thereby lowering the energy barrier for the conversion of soluble CLICs to their membrane-inserted forms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available