4.7 Article

Proapoptotic PEDF functional peptides inhibit prostate tumor growth-A mechanistic study

Journal

BIOCHEMICAL PHARMACOLOGY
Volume 92, Issue 3, Pages 425-437

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.bcp.2014.09.012

Keywords

PEDF; Epitope; Prostate carcinoma; Apoptosis; PPAR gamma

Funding

  1. National Nature Science Foundation of China [31101003, 81272338, 81272515, 81200706, 81370945]
  2. National Key Sci-Tech Special Project of China [2013ZX09102-053]
  3. Fundamental Research Funds for the Central Universities of China (Youth Program) [13ykpy06]
  4. Program for Doctoral Station in University [20120171110053]
  5. Key Project of Nature Science Foundation of Guangdong Province, China [10251008901000009]
  6. Key Sci-tech Research Project of Guangdong Province, China [2011B031200006]
  7. Guangdong Natural Science Fund [10151008901000007, S2012010009250, S2012040006986]
  8. Key Sci-tech Research Project of Guangzhou Municipality, China [2009Z1-E201, 2011Y1-00017-8, 12A52061519, 2014J4100162]
  9. 111 Project [B13037]

Ask authors/readers for more resources

PEDF inhibits tumor growth via anti-angiogenic activity; however, the direct effect of PEDF on prostate carcinoma and its functional epitope as well as the underlying mechanism regulating the pathway from extracellular receptors to nuclear transcription factors has not been fully elucidated. This study investigates the ability and mechanism by which the functional PEDF peptides PEDF34 and PEDF44 suppress tumor growth. The results showed that death receptor pathway was activated by PEDF34 through up-regulation of FasL and activation of caspase-8 in both xenograft tumor tissues and PC-3 cells. FasL knockdown by siRNA or JNK-p inhibition attenuated apoptosis induced by PEDF34. NF-kappa B and PPAR gamma are crucial transcription factors for FasL expression. PEDF34 up-regulated PPAR gamma but did not affect NF-kappa B. PEDF34-induced up-regulation of FasL was abolished by siRNA-mediated PPAR gamma knockdown or using PPAR gamma inhibitor GW9662, whereas inhibition of NF-kappa B by the inhibitor PDTC or by siRNA had no effect. Furthermore, activation of JNK is necessary for PEDF34-induced up-regulation of FasL. PEDF34 has stronger hydropathicity and more interactions with laminin receptor than PEDF44. Blocking the laminin receptor abolished the up-regulation of FasL and PPAR gamma by PEDF34. Moreover, PEDF34 uses a similar mechanism to induce apoptosis in both endothelial and cancer cells. This study provides evidence that PEDF34, not PEDF44, serves as the proapoptotic epitope and exerts proapoptotic activity in both cancer and endothelial cells through activation of the extrinsic death receptor pathway. The dual anti-tumor and anti-angiogenic activities of PEDF34 suggest that it may be a promising agent for the treatment of prostate cancer. (C) 2014 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
Article Pharmacology & Pharmacy

Melanocortin receptor 4 as a new target in melanoma therapy: Anticancer activity of the inhibitor ML00253764 alone and in association with B-raf inhibitor vemurafenib

Paola Orlandi, Marta Banchi, Francesca Vaglini, Marco Carli, Stefano Aringhieri, Arianna Bandini, Carla Pardini, Cristina Viaggi, Michele Lai, Greta Ali, Alessandra Ottani, Eleonora Vandini, Patrizia Guidi, Margherita Bernardeschi, Veronica La Rocca, Giulio Francia, Gabriella Fontanini, Mauro Pistello, Giada Frenzilli, Daniela Giuliani, Marco Scarselli, Guido Bocci

Summary: This study investigates the role of MC4R in melanoma and the use of the selective antagonist ML in combination with vemurafenib. The results show that ML can inhibit melanoma cell proliferation and induce apoptosis through the inhibition of ERK1/2 phosphorylation and reduction of BCL-XL expression. The combination of vemurafenib and ML exhibits a synergistic effect in vitro and inhibits tumor growth in vivo without causing adverse effects.

BIOCHEMICAL PHARMACOLOGY (2024)

Article Pharmacology & Pharmacy

Cardiac human bitter taste receptors contain naturally occurring variants that alter function

Conor J. Bloxham, Katina D. Hulme, Fabrizio Fierro, Christian Fercher, Cassandra L. Pegg, Shannon L. O'Brien, Simon R. Foster, Kirsty R. Short, Sebastian G. B. Furness, Melissa E. Reichelt, Masha Y. Niv, Walter G. Thomas

Summary: Bitter taste receptors (T2Rs) are a type of G protein-coupled receptors that allow humans to detect aversive and toxic substances. This study characterized the functional properties of previously identified T2Rs in human cardiac tissues and their naturally occurring polymorphisms. The results showed differences in signaling among different T2R variants, and revealed a potential association between the T2R50 Tyr203 variant and cardiovascular disease.

BIOCHEMICAL PHARMACOLOGY (2024)

Article Pharmacology & Pharmacy

Carfilzomib suppressed LDHA-mediated metabolic reprogramming by targeting ATF3 in esophageal squamous cell carcinoma

Lu Chen, Huanying Shi, Wenxin Zhang, Yongjun Zhu, Haifei Chen, Zimei Wu, Huijie Qi, Jiafeng Liu, Mingkang Zhong, Xiaojin Shi, Tianxiao Wang, Qunyi Li

Summary: This study demonstrates that Carfilzomib exhibits potent anti-tumor activity against esophageal squamous cell carcinoma (ESCC) by triggering mitochondrial apoptosis and reprogramming cellular metabolism. It has been identified that activating transcription factor 3 (ATF3) plays a crucial role as a cellular target in ESCC cells treated with Carfilzomib. Overexpression of ATF3 effectively counteracts the effects of Carfilzomib on ESCC cell proliferation, apoptosis, and metabolic reprogramming. Furthermore, ATF3 mediates the anti-tumor activity of Carfilzomib, suggesting its potential as a therapeutic agent for ESCC.

BIOCHEMICAL PHARMACOLOGY (2024)

Review Pharmacology & Pharmacy

Ferroptosis resistance in cancer: recent advances and future perspectives

Xing Zhang, Xiang Li, Ran Xia, Hong-Sheng Zhang

Summary: This review summarizes recent progress on the mechanisms of ferroptosis resistance in cancer and highlights the role of redox status and metabolism. Combination therapy for ferroptosis has great potential in treating resistant malignant tumors.

BIOCHEMICAL PHARMACOLOGY (2024)