4.6 Article

Diversity in Overall Activity Regulation of Ribonucleotide Reductase

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 290, Issue 28, Pages 17339-17348

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M115.649624

Keywords

-

Funding

  1. Kempe Foundation
  2. Carl Trygger's Foundation
  3. Swedish Cancer Foundation
  4. Swedish Research Council
  5. Wenner-Gren Foundations

Ask authors/readers for more resources

Ribonucleotide reductase (RNR) catalyzes the reduction of ribonucleotides to the corresponding deoxyribonucleotides, which are used as building blocks for DNA replication and repair. This process is tightly regulated via two allosteric sites, the specificity site (s-site) and the overall activity site (a-site). The a-site resides in an N-terminal ATP cone domain that binds dATP or ATP and functions as an on/off switch, whereas the composite s-site binds ATP, dATP, dTTP, or dGTP and determines which substrate to reduce. There are three classes of RNRs, and class I RNRs consist of different combinations of alpha and beta subunits. In eukaryotic and Escherichia coli class I RNRs, dATP inhibits enzyme activity through the formation of inactive alpha(6) and alpha(4)beta(4) complexes, respectively. Here we show that the Pseudomonas aeruginosa class IRNR has a duplicated ATP cone domain and represents a third mechanism of overall activity regulation. Each alpha polypeptide binds three dATP molecules, and the N-terminal ATP cone is critical for binding two of the dATPs because a truncated protein lacking this cone could only bind dATP to its s-site. ATP activates the enzyme solely by preventing dATP from binding. The dATP-induced inactive form is an alpha(4) complex, which can interact with beta(2) to form a non-productive alpha(4)beta(2) complex. Other allosteric effectors induce a mixture of alpha(2) and alpha(4) forms, with the former being able to interact with beta(2) to form active alpha(2)beta(2) complexes. The unique features of the P. aeruginosa RNR are interesting both from evolutionary and drug discovery perspectives.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available