4.5 Article

Chicken ileal bile-acid-binding protein: a promising target of investigation to understand binding co-operativity across the protein family

Journal

BIOCHEMICAL JOURNAL
Volume 425, Issue -, Pages 413-424

Publisher

PORTLAND PRESS LTD
DOI: 10.1042/BJ20091209

Keywords

bile-acid-binding protein; chicken ileum; co-operativity; lipid transport; multi-site interaction; NMR

Funding

  1. FIRB (Fondo per gli Investimenti delta Ricerca di Base) [RBNE03PX83]
  2. Fondazione Cariverona

Ask authors/readers for more resources

Protein-bile acid interactions are crucial microscopic events at the basis of both physiological and pathological biochemical pathways. BABPs (bile-acid-binding proteins) are intracellular transporters able to bind ligands with different stoichiometry, selectivity and co-operativity. The molecular determinants and energetics of interaction are the observables that connect the microscopic to the macroscopic frameworks. The present paper addresses the study and proposes a mechanism for the multi-site interaction of bile acids with chicken I-BABP (ileal BABP) with the aim of elucidating the determinants of ligand binding in comparison with homologous proteins from different species and tissues. A thermodynamic binding model describing two independent consecutive binding sites is derived from isothermal titration calorimetry experiments and validated on the basis of both protein-observed and ligand-observed NMR titration data. It emerges that a singly bound protein is relatively abundant at low ligand/protein molar ratios assessing the absence of strong co-operativity. Both the measured energetics of binding and the distributed protein chemical-shift perturbations are in agreement with a first binding event triggering a global structural rearrangement. The enthalpic and entropic contributions associated with binding of the first ligand indicate that the interaction increases stability and order of the bound protein. The results described in the present study point to the presence of a protein scaffold which is able to establish long-range communication networks, but does not manifest positive-binding co-operativity, as observed for the human protein. We consider chicken I-BABP a suitable model to address the molecular basis for a gain-of-function on going from non-mammalian to mammalian species.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available