4.1 Article

Characterization of dihydroflavonol 4-reductases for recombinant plant pigment biosynthesis applications

Journal

BIOCATALYSIS AND BIOTRANSFORMATION
Volume 26, Issue 3, Pages 243-251

Publisher

INFORMA HEALTHCARE
DOI: 10.1080/10242420701685635

Keywords

substrate specificity; substrate flexibility; dihydroflavonol 4-reductase; heterologous anthocyanidin biosynthesis; metabolic engineering; Escherichia coli

Ask authors/readers for more resources

Anthocyanins are colorful plant pigments with promising applications as pharmaceuticals and colorants. In order to engineer efficient pigment biosynthesis in Escherichia coli, the activities of various dihydroflavonol 4-reductases (DFRs) were characterized for the three primary dihydroflavonol substrates. The biochemical assays demonstrated variable DFR activities for dihydroflavonol with one B-ring hydroxyl group, the precursor of pelargonidin derivatives. In contrast, dihydroflavonols with two and three B-ring hydroxylation were metabolized with comparable efficiency. Furthermore, the catalysis of DFR for the secondary substrates, flavanones, also depended on the number of B-ring hydroxyl groups. Engineering the expression of the DFR clones together with plant-specific 4-coumaroyl:CoA ligase, chalcone synthase, chalcone isomerase, and flavanone 3-hydroxylase in E. coli resulted in the synthesis of pelargonidin at various levels, from p-coumaric acids. The identification of a robust DFR from this study can also be used for engineering recombinant synthesis of other bioactive flavonoids, such as flavan-3-ols.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available