4.5 Article

Recognition properties of receptors consisting of imidazole and indole recognition units towards carbohydrates

Journal

BEILSTEIN JOURNAL OF ORGANIC CHEMISTRY
Volume 6, Issue -, Pages -

Publisher

BEILSTEIN-INSTITUT
DOI: 10.3762/bjoc.6.9

Keywords

carbohydrates; hydrogen bonds; molecular recognition; receptors; supramolecular chemistry

Funding

  1. Deutsche Forschungsgemeinschaft (German Research Foundation)

Ask authors/readers for more resources

Compounds 4 and 5, including both 4(5)-substituted imidazole or 3-substituted indole units as the entities used in nature, and 2-aminopyridine group as a heterocyclic analogue of the asparagine/glutamine primary amide side chain, were prepared and their binding properties towards carbohydrates were studied. The design of these receptors was inspired by the binding motifs observed in the crystal structures of protein-carbohydrate complexes. H-1 NMR spectroscopic titrations in competitive and non-competitive media as well as binding studies in two-phase systems, such as dissolution of solid carbohydrates in apolar media, revealed both highly effective recognition of neutral carbohydrates and interesting binding preferences of these acyclic compounds. Compared to the previously described acyclic receptors, compounds 4 and 5 showed significantly increased binding affinity towards beta-galactoside. Both receptors display high beta-vs. alpha-anomer binding preferences in the recognition of glycosides. It has been shown that both hydrogen bonding and interactions of the carbohydrate CH units with the aromatic rings of the receptors contribute to the stabilization of the receptor-carbohydrate complexes. The molecular modeling calculations, synthesis and binding properties of 4 and 5 towards selected carbohydrates are described and compared with those of the previously described receptors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available