4.6 Article

Predicting goals in action episodes attenuates BOLD response in inferior frontal and occipitotemporal cortex

Journal

BEHAVIOURAL BRAIN RESEARCH
Volume 274, Issue -, Pages 108-117

Publisher

ELSEVIER
DOI: 10.1016/j.bbr.2014.07.053

Keywords

fMRI; Action observation; Coherence; Goal; Prediction; Inferior frontal gyrus

Funding

  1. Center for Mind/Brain Sciences of the University of Trento, Italy
  2. University of Munster, Germany
  3. Max Planck Society

Ask authors/readers for more resources

Actions are usually made of several action steps gearing towards an overarching goal. During observation of such action episodes the overarching action goal becomes more and more clear and upcoming action steps can be predicted with increasing precision. To tap this process, the present fMRI study investigated the dynamic changes of neural activity during the observation of distinct action steps that cohere by an overarching goal. Our hypotheses specifically addressed the role of the inferior frontal gyrus (IFG), a region assumed to be a key hub for integration functions during action processing, as well as the role of regions involved in action perception (often referred to as action observation network or AON) that should benefit from the predictability of forthcoming action steps. Participants watched separate action steps that formed a coherent action goal or not (factor goal coherence) and were performed by a single actor or not (factor actor coherence). Independent of actor coherence, neural activity in IFG and occipitotemporal cortex decreased as a function of goal predictability during the unfolding of goal-coherent episodes. In addition, we identified a network (precuneus, dorsolateral prefrontal and orbitofrontal cortex, angular gyrus, and middle temporal gyrus) that showed increased activity for goal coherence. We conclude that IFG fosters the integration of action steps to build overarching goals. Identifying the unifying goal of an action episode allows anticipation, and thus efficient processing, of forthcoming action steps. To this end, past action steps of the action episode are buffered and recollected with recourse to episodic memory. (C) 2014 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available