4.4 Article

Structural Determinants of the Interaction between the TpsA and TpsB Proteins in the Haemophilus influenzae HMW1 Two-Partner Secretion System

Journal

JOURNAL OF BACTERIOLOGY
Volume 197, Issue 10, Pages 1769-1780

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/JB.00039-15

Keywords

-

Categories

Funding

  1. NIH [R01-DC02873]

Ask authors/readers for more resources

The two-partner secretion (TPS) pathway in Gram-negative bacteria consists of a TpsA exoprotein and a cognate TpsB outer membrane pore-forming translocator protein. Previous work has demonstrated that the TpsA protein contains an N-terminal TPS domain that plays an important role in targeting the TpsB protein and is required for secretion. The nontypeable Haemophilus influenzae HMW1 and HMW2 adhesins are homologous proteins that are prototype TpsA proteins and are secreted by the HMW1B and HMW2B TpsB proteins. In the present study, we sought to define the structural determinants of HMW1 interaction with HMW1B during the transport process and while anchored to the bacterial surface. Modeling of HMW1B revealed an N-terminal periplasmic region that contains two polypeptide transport-associated (POTRA) domains and a C-terminal membrane-localized region that forms a pore. Biochemical studies demonstrated that HMW1 engages HMW1B via interaction between the HMW1 TPS domain and the HMW1B periplasmic region, specifically, the predicted POTRA1 and POTRA2 domains. Subsequently, HMW1 is shuttled to the HMW1B pore, facilitated by the N-terminal region, the middle region, and the NPNG motif in the HMW1 TPS domain. Additional analysis revealed that the interaction between HMW1 and HMW1B is highly specific and is dependent upon the POTRA domains and the pore-forming domain of HMW1B. Further studies established that tethering of HMW1 to the surface-exposed region of HMW1B is dependent upon the external loops of HMW1B formed by residues 267 to 283 and residues 324 to 330. These observations may have broad relevance to proteins secreted by the TPS pathway.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available