4.6 Article

Multi-stage metamorphism in the South Armenian Block during the Late Jurassic to Early Cretaceous: Tectonics over south-dipping subduction of Northern branch of Neotethys

Journal

JOURNAL OF ASIAN EARTH SCIENCES
Volume 102, Issue -, Pages 4-23

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jseaes.2014.07.018

Keywords

Lesser Caucasus; Subduction; South Armenian Block; Geochronology

Funding

  1. MEBE (Middle East Basin Evolution) program
  2. DARIUS program
  3. UMPC
  4. INSU/CNRS
  5. Armenian National Academy of Science (Institute of Geological Sciences)

Ask authors/readers for more resources

The geologic evolution of the South Armenian Block (SAB) in the Mesozoic is reconstructed from a structural, metamorphic, and geochronologic study including U-Pb and 40Ar/39Ar dating. The South Armenian Block Crystalline Basement (SABCB) outcrops solely in a narrow tectonic window, NW of Yerevan. The study of this zone provides key and unprecedented information concerning closing of the Northern Neotethys oceanic domain north of the Taurides-Anatolides platform from the Middle Jurassic to the Early Cretaceous. The basement comprises of presumed Proterozoic orthogneiss overlain by metamorphosed pelites as well as intrusions of granodiorite and leucogranite during the Late Jurassic and Early Cretaceous. Structural, geochronological and petrological observations show a multiphased evolution of the northern margin of the SAB during the Late Jurassic and Early Cretaceous. A south-dipping subduction under the East Anatolian Platform-South Armenian Block (EAP-SAB) is proposed in order to suit recent findings pertaining emplacement of relatively hot subduction related granodiorite as well as the metamorphic evolution of the crystalline basement in the Lesser Caucasus area. The metamorphism is interpreted as evidencing: (1) M1 Barrovian MP-MT conditions (staurolite kyanite) at c. 157-160 Ma and intrusion of dioritic magmas at c. 150-156 Ma, (2) near-adiabatic decompression is featured by partial melting and production of leucogranites at c. 153 Ma, followed by M2 HT-LP conditions (andalusite K-feldspar). A phase of shearing and recrystallization is ascribed to doming at c. 130-150 Ma and cooling at 400 degrees C by c. 123 Ma (M3). Structural observations show (1) top to the north shearing during M1 and (2) radial extension during M2. The extensional event ends by emplacement of a thick detrital series along radial S, E and W-dipping normal faults. Further, the crystalline basement is unconformably covered by Upper Cretaceous-Paleocene series dated by nannofossils, evolving from Maastrichtian manly sandstones to Paleocene limestones. (C) 2014 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available