4.6 Article

Study on the frequency characteristics of nanogap electron devices

Journal

JOURNAL OF APPLIED PHYSICS
Volume 117, Issue 20, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4921866

Keywords

-

Funding

  1. National Natural Science Foundation of China [61007036, 61203192, 51120125001, 51477028]

Ask authors/readers for more resources

Ballistic electron transport in the nanogap devices will make it practical to combine the advantages of solid-state devices and vacuum electron devices including high integration and high frequency characteristics. Although a number of experiments have been exploited on frequency characteristic in nanogap, less modeling or calculations were investigated at such scale yet. In this paper, the concept of mean flight time is proposed in order to theoretically determine the frequency in nanoscale. Traditionally, we have to first determine the frequency response diagram and then deduce the cut-off frequency. This work presents a new method for exploring the frequency characteristics of electron transport in a nanogap structure by calculations and numerical simulations. A double-gate structure was applied in the simulations, and the results suggest that the nanogap structure can perform in the THz range. Additionally, an equivalent circuit model was adopted to demonstrate the validity of this method. Our results provide a model for the intrinsic ballistic transportation of electrons inside the nanogap electron devices. (c) 2015 AIP Publishing LLC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available