4.5 Article

Inhibition of histone deacetylase 2 mitigates profibrotic TGF-β1 responses in fibroblasts derived from Peyronie's plaque

Journal

ASIAN JOURNAL OF ANDROLOGY
Volume 15, Issue 5, Pages 640-645

Publisher

WOLTERS KLUWER MEDKNOW PUBLICATIONS
DOI: 10.1038/aja.2013.61

Keywords

cell culture; fibrosis; histone deacetylase; Peyronie's disease; transforming growth factor-beta

Funding

  1. Korea Science and Engineering Foundation [2011-0015771]
  2. Korea government (Ministry for Education, Science, and Technology)
  3. Korea Healthcare technology R&D Project, Ministry for Health, Welfare & Family Affairs, Republic of Korea [A110076]
  4. National Research Foundation of Korea [2011-0015771] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

Epigenetic modifications, such as histone acetylation/deacetylation, have been shown to play a role in the pathogenesis of fibrotic disease. Peyronie's disease (PD) is a localized fibrotic process of the tunica albuginea, which leads to penile deformity. This study was undertaken to determine the anti-fibrotic effect of small interfering RNA (siRNA)-mediated silencing of histone deacetylase 2 (HDAC2) in primary fibroblasts derived from human PD plaque. PD fibroblasts were pre-treated with HDAC2 siRNA and then stimulated with transforming growth factor-beta 1 (TGF-beta 1). Protein was extracted from treated fibroblasts for Western blotting and the membranes were probed with antibody to phospho-Smad2/Smad2, phospho-Smad3/Smad3, smooth muscle alpha-actin and extracellular matrix proteins, including plasminogen activator inhibitor-1, fibronectin, collagen I and collagen IV. We also performed immunocytochemistry to detect the expression of extracellular matrix proteins and to examine the effect of HDAC2 siRNA on the TGF-beta 1-induced nuclear translocation of Smad2/3 in fibroblasts. Knockdown of HDAC2 in PD fibroblasts abrogated TGF-beta 1-induced extracellular matrix production by blocking TGF-beta 1-induced phosphorylation and nuclear translocation of Smad2 and Smad3, and by inhibiting TGF-beta 1-induced transdifferentiation of fibroblasts into myofibroblasts. Decoding the individual function of the HDAC isoforms by use of siRNA technology, preferably siRNA for HDAC2, may lead to the development of specific and safe epigenetic therapies for PD.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available