4.1 Article

The Impact of Observation Systems on Medium-Range Weather Forecasting in a Global Forecast System

Journal

ASIA-PACIFIC JOURNAL OF ATMOSPHERIC SCIENCES
Volume 48, Issue 2, Pages 159-170

Publisher

KOREAN METEOROLOGICAL SOC
DOI: 10.1007/s13143-012-0016-4

Keywords

Observing system experiment; data assimilation; NCEP/DOE system; medium-range forecasts

Funding

  1. National Research Foundation of Korea (NRF)
  2. Ministry of Education, Science and Technology [2012-0000158]

Ask authors/readers for more resources

To investigate the impact of various types of data on medium-range forecasts, observing system experiments are performed using an assimilation algorithm based on the National Centers for Environmental Prediction (NCEP)/Department of Energy (DOE) reanalysis system. Data-denial experiments for radiosonde, satellite, aircraft, and sea surface observations, and selected data experiments for radiosonde and surface data, are conducted for the boreal summer of 1997 and the boreal winter of 1997/1998. The data assimilation system used in this study is remarkably dependent on radiosonde data, which provides information about the three-dimensional structure of the atmosphere. As expected, the impact of radiosonde observations on medium-range forecasts is strongly positive over the Northern Hemisphere and tropics, whereas the satellite system is most beneficial over the Southern Hemisphere. These results are also found in experiments simulating historical changes in observation systems. Over the tropics, assimilation without radiosonde observations generates unbalanced analyses resulting in unrealistic forecasts that must be corrected by the forecast model. Forecasts based on analysis from the observation data before the era of radiosonde observation are found to be less meaningful. In addition, the impacts on forecasts are closely related to the geographical distribution of observation data. The memory of observation data embedded in the analysis tends to persist throughout forecasts. However, cases exist where the effect of forecast error growth is more dominant than that of analysis error, e.g., over East Asia in summer, and where the deficiency in observations is supplemented or the imbalance in analysis is adjusted by the forecast model during the period of forecasts. Forecast error growth may be related to the synoptic correction performed by the data assimilation system. Over data-rich areas, analysis fields are corrected to a greater extent by the data assimilation system than are those over data-poor areas, which can cause the forecast model to produce more forecast errors in medium-range forecasts. It is found that even one month per season is sufficient for forecast skill verification in data impact experiments. Additionally, the use of upper-air observations is found to benefit areas that are downstream of observation data-rich areas.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available