4.7 Article

Structural, electrical, optical and analytical applications of newly synthesized polyaniline based nickel molybdate composite

Journal

JOURNAL OF ALLOYS AND COMPOUNDS
Volume 636, Issue -, Pages 124-130

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2015.02.016

Keywords

Ion-exchange; Distribution coefficient; Binary separation; Optical; Electrical

Funding

  1. University Grant Commission (UGC)

Ask authors/readers for more resources

The synthesis of polyaniline based nickel molybdate nano composite cation exchanger was described by sol-gel method and was explored to study the electrical, optical and analytical applications. The nano composite material was characterized by Fourier Transform Infrared (spectrometer), X-ray diffraction, particle size analyzer, scanning electron microscopy and tunneling electron microscopy. The XRD of nano composite material confirmed the semi-crystalline nature while as particle size analysis as well as TEM depicted average particle size of 76 nm. The partition coefficient studies of different metal ions in the composite were performed in demineralised water and sodium dodecyl sulfate surfactant, and it was found to be selective for Pb(II), Hg(II) and Th(IV) ions. To implement the use of polyaniline Ni(II) molybdate nano composite as adsorbent, some important binary separations of metal ions were performed. SEM analysis showed that the nano composite has random non-preferential orientation with no visible cracks and appeared to be composed of dense and loose aggregation of small particles. The UV-vis spectrum of the nano composite indicated a band gap of about 3.44 eV showing a weak blue shift compared to 3.37 eV for the bulk. Due to their optical and electrical properties, nano composite is promising candidate for use as selectivity of different cations. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available