4.1 Article

EFFECT OF TOOL SHAPE ON TEMPERATURE FIELD IN FRICTION STIR SPOT WELDING

Journal

ARCHIVES OF METALLURGY AND MATERIALS
Volume 58, Issue 2, Pages 595-599

Publisher

POLISH ACAD SCIENCES COMMITTEE METALLURGY
DOI: 10.2478/amm-2013-0043

Keywords

Friction stir spot welding (FSSW); metal welding; FEM; Al 6061-T6

Funding

  1. Structural Funds in the Operational Programme - Innovative Economy (IE OP)
  2. European Regional Development Fund - Project Modern material technologies in aerospace industry [POIG.01.01.02-00-015/08-00]

Ask authors/readers for more resources

Friction stir welding (FSW) is one of the youngest methods of metal welding. Metals and its alloys are joined in a solid state at temperature lower than melting points of the joined materials. The method is constantly developed and friction stir spot welding (FSSW) is one of its varieties. In the friction stir spot welding process a specially designed tool is brought into rotation and plunged, straight down, in the joined materials. Heat is generated as a result of friction between the tool and materials, and plastic deformation of the joined materials. Softening (plastic zone) of the joined materials occurs. Simultaneously the materials are stirred. After removal of the tool, cooling down the stirred materials create a solid state joint. Numerical simulation of the process was carried out with the ADINA System based on the finite element method (FEM). The problem was considered as an axisymmetric one. A thermal and plastic material model was assumed for Al 6061-T6. Frictional heat was generated on the contact surfaces between the tool and the joined elements. The model of Coulomb friction, in which the friction coefficient depends on the temperature, was used. An influence of the tool geometry on heat generation in the welded materials was analysed. The calculations were carried out for different radiuses of the tool stem and for different angles of the abutment. Temperature distributions in the welded materials as a function of the process duration assuming a constant value of rotational tool speed and the speed of tool plunge were determined. Additionally, the effect of the stem radius and its height on the maximum temperature was analysed. The influence of tool geometry parameters on the temperature field and the temperature gradient in the welded materials was shown. It is important regarding the final result of FSSW.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available