4.6 Article

Insulin-like modulation of Akt/FoxO signaling by copper ions is independent of insulin receptor

Journal

ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS
Volume 558, Issue -, Pages 42-50

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.abb.2014.06.004

Keywords

Insulin signaling; PTPase (protein tyrosine phosphatase); ROS; Copper ions; Hepatoma cells; Linsitinib; Akt; FoxO

Funding

  1. Natural Sciences and Engineering Research Council of Canada (NSERC) [RGPIN 402228-2011]
  2. Canada Foundation for Innovation (CFI)
  3. Alberta Advanced Education and Technology (AET)
  4. Canada Research Chairs (CRC) Program

Ask authors/readers for more resources

Copper ions are known to induce insulin-like effects in various cell lines, stimulating the phosphoinositide 3'-kinase (PI3K)/Akt signaling cascade and leading to the phosphorylation of downstream targets, including FoxO transcription factors. The aim of this work was to study the role of insulin- and IGF1-receptors (IR and IGF1R) in insulin-like signaling induced by copper in HepG2 human hepatoma cells. Cells were exposed to Cu(II) at various concentrations for up to 60 min. While Akt and FoxO1a/FoxO3a were strongly phosphorylated in copper- and insulin-treated cells at all time points studied, only faint tyrosine phosphorylation of IR/IGF1R was detected in cells exposed to Cu(II) by either immunoprecipitation/immunoblot or by immunoblotting using phospho-specific antibodies, whereas insulin triggered strong phosphorylation at these sites. Pharmacological inhibition of IR/IGF1R modestly attenuated Cu-induced Akt and Fox() phosphorylation, whereas no attenuation of Cu-induced Akt activation was achieved by siRNA-mediated IR depletion. Cu(II)-induced FoxO1a nuclear exclusion was only slightly impaired by pharmacological inhibition of IR/IGF1R, whereas insulin-induced effects were blunted. In contrast, genistein, a broad-spectrum tyrosine kinase inhibitor, at concentrations not affecting IR/IGF1R, attenuated Cu(II)-induced Akt phosphorylation, pointing to the requirement of tyrosine kinases other than IR/IGF1R for Cu(II)-induced signaling. (C) 2014 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available