4.7 Article

Embryonic gene expression among pollutant resistant and sensitive Fundulus heteroclitus populations

Journal

AQUATIC TOXICOLOGY
Volume 98, Issue 3, Pages 221-229

Publisher

ELSEVIER
DOI: 10.1016/j.aquatox.2010.02.022

Keywords

Fundulus heteroclitus; Microarrays; Developmental stages; Embryo gene expression

Funding

  1. NIH [5 RO1 ES011588, 2P42 ES010356, 2 P42 ES007381]

Ask authors/readers for more resources

Changes in gene expression, coupled with biochemical, physiological, and behavioral alterations, play a critical role in adaptation to environmental stress. Our goal was to explore ways natural populations may have adapted to local, polluted environments. We took advantage of natural populations of Fundulus heteroclitus, one of the few studied fish species in North America that has established resistant populations in highly contaminated urban estuaries. We analyzed morphology, physiology, and gene expression of developing F. heteroclitus embryos during late organogenesis (stage 31); these embryos were from both resistant and sensitive populations and were raised in a common, unpolluted environment. While cardiac heart rates show significant differences between embryos of parents from clean and heavily contaminated Superfund sites, time-to-stage, embryo morphology, and gene expression profile analyses do not differ significantly between untreated embryos from resistant and sensitive populations. Further evaluation that includes tissue-specific approaches in gene expression analysis and larger sample sizes may be necessary to highlight important phenotypes associated with mechanisms of sensitivity and resistance among natural F. heteroclitus embryo populations. Alternatively, population differences may be masked by developmental canalization, and biologically important differences between sensitive and resistant embryos may only manifest with exposure (e.g., be dependent on gene by environment interactions). (C) 2010 Elsevier BM. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available