4.4 Article

Primary production and nutrient budgets of Sarcocornia perennis ssp alpini (Lag.) Castroviejo in the salt marsh of the Palmones River estuary (Southern Spain)

Journal

AQUATIC BOTANY
Volume 91, Issue 3, Pages 130-136

Publisher

ELSEVIER
DOI: 10.1016/j.aquabot.2009.04.002

Keywords

Sarcocornia perennis alpini; Production; Decomposition; Detritus; Nutrient sequestration

Funding

  1. Spanish Ministry of Science and Technology [AMB99-1088]

Ask authors/readers for more resources

Biomass, primary production and nutrient budgets associated to Sarcocornia perennis subspecies (ssp.) alpini were studied in the Palmones River estuary salt marsh (Southern Spain) to evaluate the nutrient sequestration capacity of the low marsh. Above- and belowground living and dead biomass, as well as carbon, nitrogen and phosphorus content were monitored during I year. Additionally, the fate of aboveground detritus was evaluated in an experiment on litter decomposition. The detritus production of S. perennis ssp. alpini was almost equivalent to its annual primary production indicating a rapid turnover of biomass. We calculated that only 12% of the aboveground detritus was exported out of the low marsh while the rest was decomposed in the sediment with a rate of 0.8 year(-1). Changes in concentrations of total carbon, nitrogen and phosphorus in the sediment showed patterns related to S. perennis ssp. alpini belowground biomass. Our results suggested that the sediment functions as a net sink for nutrients accumulating 550 g C m(-2) year(-1), 55 g N m(-2) year(-1), and 13 g p m(-2) year(-1). (C) 2009 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
Article Plant Sciences

Preliminary explorations of environmental tolerances and growth rates of holopelagic Sargassum morphotypes

Jeffrey M. Schell, Deborah S. Goodwin, Rebecca H. Volk, Amy N. S. Siuda

Summary: Understanding the environmental tolerances and growth rates of different species of macroalgae is crucial for predicting their spatial and temporal dynamics. This study found that different morphotypes of Sargassum exhibited varying responses to temperature and salinity conditions.

AQUATIC BOTANY (2024)

Article Plant Sciences

Marine macrophyte strandings in the Yucatan peninsula: Citizen science as a potential tool for long-term monitoring

Erika Valzauez-Delfin, Carmen Galindo-De Santiago, Arely Paredes-Chi, Ameyalli Rios-Vazquez, Ana Benavides-Lahnstein, Kaysara Khatun, Juliet Brodie

Summary: Massive strandings of seaweed on the eastern coasts of the Yucat ' an peninsula, Mexico have become a major socioecological problem. A citizen science initiative, Big Seaweed Search Mexico (BSS-Mx), was developed to monitor temporal changes in the biomass stranded. The results represent baseline information that should be considered to develop management strategies and marine conservation actions according to each region.

AQUATIC BOTANY (2024)

Review Plant Sciences

A systematic review of mechanistic models of riverine macrophyte growth

Lee H. Dietterich, Suhey Ortiz Rosa, Bianca R. Charbonneau, S. Kyle McKay

Summary: Riverine macrophytes play crucial ecological roles in river ecosystems, but their growth models have received relatively limited attention compared to other aquatic or terrestrial plants. This systematic review reveals that current models often overlook important factors such as shading and the role of macrophytes in nutrient cycles. Future research should focus on exploring these factors and developing a conceptual framework to guide macrophyte growth modeling. Emphasizing modularity and accessibility is also important for improving efforts to model and manage riverine ecosystems.

AQUATIC BOTANY (2024)

Review Plant Sciences

The influence of nitrate pollution on elemental and isotopic composition of aquatic and semi-aquatic bryophytes

Alba Martin, Jordi Corbera, Oriol Cano, Catherine Preece, Josep Penuelas, Francesc Sabater, Marcos Fernandez-Martinez

Summary: Bryophytes can play a significant role in ecosystem processes and hold potential as bio-indicators for monitoring environmental pollution. This study examined the effects of NO3- pollution on the elemental composition of aquatic and semi-aquatic bryophytes and identified suitable species as bio-indicators. Higher NO3- concentrations were found in spring water from intense farming and urban areas, positively correlated with N content and delta N-15 isotope ratio in bryophytes. Apopellia endiviifolia and Oxyrrhynchium speciosum were highlighted as promising candidates for bio-indication of aquatic NO3- pollution.

AQUATIC BOTANY (2024)

Article Plant Sciences

Seed bank and germination ecology of sub-tropical Vallisneria americana

Christine B. Rohal, Carrie Reinhardt Adams, Charles W. Martin, Sarah Tevlin, Laura K. Reynolds

Summary: This study investigated the seed production, seed banking, and germination cues of sub-tropical Vallisneria americana. It was found that the seeds of sub-tropical populations were dormant and could only germinate in the presence of organic material, light, or following scarification. Germination rate was enhanced by the presence of low-oxygen organic sediments and ethanol. These findings suggest a germination strategy focused on exploiting openings in existing vegetation following disturbance.

AQUATIC BOTANY (2024)

Article Plant Sciences

Distributional range shifts of Western Atlantic benthic Sargassum species (Fucales, Phaeophyceae) under future climate change scenarios

Fabiano Faga, Carlos Frederico Deluqui Gurgel

Summary: Climate change is altering the distribution of marine biota, including Sargassum species. Future changes in abiotic variables are predicted to cause shifts in the latitudinal range and suitability area of Sargassum species. These changes may have significant impacts on marine ecosystems.

AQUATIC BOTANY (2024)

Article Plant Sciences

High methane emissions as trade-off for phosphorus removal in surface flow treatment wetlands

Ulo Mander, Martin Maddison, Alex C. Valach, Kaido Soosaar, Keit Kill, Kuno Kasak

Summary: Constructed wetlands treating runoff from agricultural catchments can reduce nutrient load of water, but they can also be significant sources of greenhouse gases, especially methane. This study assessed methane emission potentials and phosphorus removal efficiency in a 0.45 ha in-stream surface flow constructed wetland, and analyzed the temporal dynamics of methane emissions and phosphorus removal over a nearly 4-year period. The results showed a clear seasonal dynamic in phosphorus removal efficiency and an increasing trend in methane emissions over the years, with the majority of methane fluxes occurring during the warm period. Maintenance of the wetland and regular removal of aboveground vegetation can reduce methane emissions, and regular sediment removal is also necessary due to phosphorus saturation.

AQUATIC BOTANY (2024)

Article Plant Sciences

Recent occurrence and expansion of the non-indigenous alga Rugulopteryx okamurae in Morocco (Mediterranean and Atlantic shores)

Monsif El Madany, Mustapha Hassoun, Fatima El Aamri, Noureddine El Mtili

Summary: The non-indigenous brown alga Rugulopteryx okamurae is invading and proliferating massively in the northwest of Morocco, including the Mediterranean Sea and Atlantic Ocean.

AQUATIC BOTANY (2024)

Article Plant Sciences

Fine-scale genetic structure of co-occurring seagrass species highlights the importance of repeated seedling recruitment (Leyte Island, Philippines)

Jessa May Malanguis, Tim Sierens, Ludwig Triest

Summary: This study demonstrates the importance of movement ecology and dispersal mechanism in the dynamics and resilience of seagrass populations and ecosystems. The comparison of genetic diversity and fine-scaled structure of two co-occurring seagrass species reveals the significance of different survival strategies and reproductive modes. These findings have important implications for conservation efforts, suggesting the preservation of natural expansion and local seed recruitment for successful conservation.

AQUATIC BOTANY (2024)

Article Plant Sciences

Effects of nutrients and light in aquatic habitat on the growth of Hydrocotyle vulgaris when expanded from terrestrial to aquatic habitat

Zhi-Huan Chen, Rui Zhang, Jun-Cai Xin, Zi-Han Qian, Shu-Jie Wang, Shang-Yan Qiu, Xue-Ge He, Chao Si

Summary: Nutrient availability and light intensity play important roles in the expansion of amphibious clonal plants from terrestrial to aquatic habitats. High nutrient levels and light conditions promote the growth of the apical portions and overall performance of the clones. Maintaining clonal integration can benefit the expansion of the plants by optimizing resource utilization. These findings have implications for predicting community dynamics and vegetation restoration in ecotones like wetlands.

AQUATIC BOTANY (2024)