4.7 Article

Design and economic optimization of shell-and-tube heat exchangers using biogeography-based (BBO) algorithm

Journal

APPLIED THERMAL ENGINEERING
Volume 51, Issue 1-2, Pages 1263-1272

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.applthermaleng.2012.12.002

Keywords

Shell and tube heat exchanger; Optimal design; Economic optimization; Biogeography-based optimization

Ask authors/readers for more resources

Cost minimization of Shell-and-tube heat exchangers is a key objective. Traditional design approaches besides being time consuming, do not guarantee the reach of an economically optimal solution. So, in this research, a new shell and tube heat exchanger optimization design approach is developed based on biogeography-based optimization (BBO) algorithm. The BBO algorithm has some good features in reaching to the global minimum in comparison to other evolutionary algorithms. In this study BBO technique has been applied to minimize the total cost of the equipment including capital investment and the sum of discounted annual energy expenditures related to pumping of shell and tube heat exchanger by varying various design variables such as tube length, tube outer diameter, pitch size, baffle spacing, etc. Based on proposed method, a full computer code was developed for optimal design of shell and tube heat exchangers and three different test cases are solved by it to demonstrate the effectiveness and accuracy of the proposed algorithm. Finally the results are compared to those obtained by literature approaches up to the present. The obtained results indicate that the BBO algorithm can be successfully applied for optimal design of shell and tube heat exchangers. (C) 2012 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available