4.7 Article

Surface interactions, corrosion processes and lubricating performance of protic and aprotic ionic liquids with OFHC copper

Journal

APPLIED SURFACE SCIENCE
Volume 273, Issue -, Pages 578-597

Publisher

ELSEVIER
DOI: 10.1016/j.apsusc.2013.02.083

Keywords

Copper; Ionic liquids; Surface interactions; Corrosion; Lubrication

Funding

  1. Ministerio de Economia y Competitividad (Spain) [MAT2011-23162]
  2. Ministerio de Educacion, Cultura y Deporte (Spain) [AP2010-3485]

Ask authors/readers for more resources

In order to select possible candidates for use as lubricants or as precursors of surface coatings, the corrosion and surface interactions of oxygen-free high conductivity (OFHC) copper with two new protic (PIL) and four aprotic (APIL) room-temperature ionic liquids have been studied. The PILs, with no heteroatoms in their composition, are the triprotic di[(2-hydroxyethyl)ammonium] succinate (MSu) and the diprotic di[bis-(2-hydroxyethyl) ammonium] adipate (DAd). The four APILs contain imidazolium cations with short or long alkyl chain substituents and reactive anions: 1-ethyl-3-methylimidazolium phosphonate ([EMIM]EtPO3H); 1-ethyl-3-methylimidazolium octylsulfate ([EMIM]C8H17SO4); 1-hexyl-3-methylimidazolium tetrafluoroborate ([HMIM]BF4) and 1-hexyl-3-methylimidazolium hexafluorophosphate ([HMIM]PF6). Contact angles between the ionic liquids and OFHC copper surface were measured. Mass and roughness changes of OFHC copper after 168 h in contact with the ionic liquids have been determined. Copper surfaces were studied by XRD, SEM-EDX and XPS surface analysis. FTIR spectra of the liquid phases recovered after being in contact with the copper surface were compared with that of the neat ionic liquids. The lowest corrosion rate is observed for the diprotic ammonium adipate PIL (DAd), which gives low mass and surface roughness changes and forms adsorbed layers on copper, while the triprotic ammonium succinate salt (MSu) produces a severe corrosive attack by reaction with copper to form a blue crystalline solid, which has been characterized by FTIR and thermal analysis (TGA). All imidazolium APILs react with copper, with different results as a function of the anion. As expected, [EMIM]C8H17SO4 reacts with copper to form the corresponding copper sulphate salt. [EMIM]EtPO3H produces severe corrosion to form a phosphonate-copper soluble phase. [HMIM]BF4 gives rise to the highest roughness increase of the copper surface. [HMIM]PF6 shows the lowest mass and roughness changes of the four imidazolium ionic liquids due to the formation of a solid layer containing phosphorus and fluorine. The results described in the present study are in agreement with the outstanding good tribological performance of the diprotic ammonium adipate (DAd) ionic liquid for the copper-copper contact, in pin-on-disc tests, preventing wear and giving a very low friction coefficient of 0.01. Under the same conditions, [HMIM]PF6 gives a friction value of 0.03, while the reactivity of MSu towards copper produces maximum friction peaks of 0.05. In contrast with the absence of surface damage on copper, an abrasive wear mechanism is observed for MSu and [HMIM]PF6. The results confirm a better lubricating performance for a lower corrosion rate. (C) 2013 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available