4.7 Article

Cellular response to poly(vinyl alcohol) nanofibers coated with biocompatible proteins and polysaccharides

Journal

APPLIED SURFACE SCIENCE
Volume 258, Issue 18, Pages 6914-6922

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apsusc.2012.03.135

Keywords

Poly(vinyl alcohol) (PVA); Electrospinning; Nanofiber; Chitosan; Collagen; Hyaluronic acid; Silk fibroin; Coating; Cell

Funding

  1. Ministry for Health, Welfare & Family Affairs, Republic of Korea [A060121]
  2. Korea Health Promotion Institute [A060121] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

A PVA nanofibrous matrix was prepared by electrospinning an aqueous 10 wt% PVA solution. The mean diameter of the PVA nanofibers electrospun from the aqueous PVA solution was 240 nm. The water resistance of the as-spun PVA nanofibrous matrix was improved by physically crosslinking the PVA nanofibers by heat treatment at 150 degrees C for 10 min. In addition, the heat-treated PVA nanofibrous matrix was coated with biocompatible polysaccharides (chitosan (CHI) or hyaluronic acid (HA)) and proteins (collagen (COL) or silk fibroin (SF)) to construct biomimetic nanofibrous scaffolds. The coating of proteins or polysaccharides on the PVA nanofibrous matrix was confirmed by ATR-IR spectra, and the degree of coating was determined by elemental analysis based on nitrogen content. The coated PVA matrices exhibited less hydrophilicity, except for the HA coating, and better tensile properties than the pure PVA nanofibrous matrix. The increase in tensile properties was due to interfiber bonds formed by the coating. The effect of protein and polysaccharide coating on normal human keratinocytes (NHEKs) and fibroblasts (NHEFs) was examined by cytocompatibility assessment in vitro. Among the CHI-, COL-, HA-and SF-coated PVA matrices, the SF-coated PVA nanofibrous matrix was found to be the most promising scaffold for the attachment and spreading of NHEKs and NHEFs as compared to the pure PVA matrix. This approach to controlling the surface properties of nanofibrous structures with SF may be useful in the design and tailoring of novel matrices for skin regeneration. (C) 2012 Elsevier B. V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available