4.7 Article

Electrodeposition of Al-Mn alloy on AZ31B magnesium alloy in molten salts

Journal

APPLIED SURFACE SCIENCE
Volume 255, Issue 9, Pages 4926-4932

Publisher

ELSEVIER
DOI: 10.1016/j.apsusc.2008.12.039

Keywords

Magnesium alloy; Electrodeposition; Al-Mn alloy; Zn intermediate layer; Corrosion resistance

Funding

  1. National Natural Science Foundation of China [50571105]

Ask authors/readers for more resources

The Al-Mn alloy coatings were electrodeposited on AZ31B Mg alloy in AlCl3-NaCl-KCl-MnCl2 molten salts at 170 degrees C aiming to improve the corrosion resistance. However, in order to prevent AZ31B Mg alloy from corrosion during electrodeposition in molten salts and to ensure excellent adhesion of coatings to the substrate, AZ31B Mg alloy should be pre-plated with a thin zinc layer as intermediate layer. Then the microstructure, composition and phase constituents of the coatings were investigated by scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDX), and X-ray diffraction (XRD). It was indicated that, by adjusting the MnCl2 content in the molten salts from 0.5 wt% to 2 wt%, the Mn content in the alloy coating was increased and the phase constituents were changed from f.c.c Al-Mn solid solution to amorphous phase. The corrosion resistance of the coatings was evaluated by potentiodynamic polarization measurements in 3.5% NaCl solution. It was confirmed that the Al-Mn alloy coatings exhibited good corrosion resistance with a chear passive region and significantly reduced corrosion current density at anodic potentiodynamic polarization. The corrosion resistance of the alloy coatings was also related with the microstructure and Mn content of the coatings. (C) 2009 Elsevier B. V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available