4.6 Article

Microbial activity and quality changes during decomposition of Quercus ilex leaf litter in three Mediterranean woods

Journal

APPLIED SOIL ECOLOGY
Volume 40, Issue 3, Pages 401-410

Publisher

ELSEVIER
DOI: 10.1016/j.apsoil.2008.06.013

Keywords

Litter decomposition; Enzyme activities; Microbial respiration; Fungal biomass; Lignin; Cellulose

Categories

Funding

  1. MURST (Ministero dell'Universita e Ricerca Scientifica e Tecnologica) of Italy
  2. European Community [ENV4CT970680]

Ask authors/readers for more resources

Changes in enzyme activities during litter decomposition provide diagnostic information on the dynamics of decay and functional microbial succession. Here we report a comparative study of enzyme activities involved in the breakdown of major plant components and of other key parameters (microbial respiration, fungal biomass, N, lignin and cellulose contents) in homogeneous leaf litter of Quercus ilex L. incubated in three evergreen oak woods in Southern Italy (Campania), differing for chemical and physical soil characteristics and microclimatic conditions. The results showed that the litter mass loss rates were similar in the three wood sites. Independently of the incubation sites, cellulase, xylanase and peroxydase activities showed seasonal variations with maximum and minimum levels in wet and dry periods, respectively, and this pattern closely matched microbial respiration. Activities of alpha- and beta-amylase, instead, were high at the beginning of incubation and quickly decreased with decomposition progress because their substrate was rapidly depleted. Laccase activity, in contrast, was low at the beginning of incubation but after 6 months it increased significantly. The increase of laccase activity was correlated to an increase in fungal biomass, probably reflecting a major shift in the litter microbial community. As concerns quality changes, N and lignin content did not significantly change during decay. The cellulosic component started being degraded after about 6 months in the litter incubated in two of the three wood sites and from the start of decomposition in the third site. Apart from minor differences in the levels of certain enzyme activities, the data showed that the functional microbial succession involved in the decomposition of Q. ilex leaf litter did not change appreciably in response to differences in soil and microclimatic conditions in the incubation sites. (C) 2008 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available