4.5 Article

Effect of resveratrol and quercetin supplementation on redox status and inflammation after exercise

Journal

APPLIED PHYSIOLOGY NUTRITION AND METABOLISM
Volume 38, Issue 7, Pages 760-765

Publisher

CANADIAN SCIENCE PUBLISHING
DOI: 10.1139/apnm-2012-0455

Keywords

oxidative stress; F-2-isoprostanes; cytokines; flavonoids; exercise; antioxidants

Funding

  1. Appalachian State University Research Council
  2. Vaughn Christian Research Endowment

Ask authors/readers for more resources

Resveratrol and quercetin function as antioxidants and anti-inflammatories in vitro, but these mechanisms have been minimally examined in combination in exercising humans. The purpose of this investigation was to examine supplementation as a countermeasure against oxidative stress and inflammation in response to exercise. Fourteen athletes were randomly assigned, in a double-blind crossover design, to a resveratrol and quercetin combination (RQ) (120 mg resveratrol and 225 mg quercetin for 6 days and 240 mg resveratrol and 450 mg quercetin on day 7 just prior to exercise) or to placebo (P). There was a 1-week washout between trials. Blood was taken at baseline, pre-exercise, immediately after exercise, and 1 h after exercise. Plasma was analyzed for oxidative stress (F-2-isoprostanes and protein carbonyls), antioxidant capacity (ferric-reducing ability of plasma (FRAP), Trolox equivalent antioxidant capacity (TEAC), oxygen radical absorptive capacity (ORAC)), and inflammation (cytokine interleukin (IL)-8 and C-reactive protein (CRP)). Statistical design utilized a 2x3 ANOVA and Student's t test. Pre-exercise values were not different from baseline for any measure. The postexercise increase in F-2-isoprostanes was significantly less (p = 0.039 interaction) with RQ (68%) than with P (137%). Protein carbonyls, FRAP, ORAC, and TEAC significantly increased after exercise but were not affected by treatment. IL-8 and CRP increased significantly immediately after exercise but were not affected by treatment. These data indicate that RQ significantly reduces exercise-induced lipid peroxidation without associated changes in inflammation or plasma antioxidant status.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available