4.6 Article

Capacitance tuning of nanoscale split-ring resonators

Journal

APPLIED PHYSICS LETTERS
Volume 95, Issue 19, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.3263191

Keywords

-

Funding

  1. Danish Research Council [274-07-0057]

Ask authors/readers for more resources

We investigate the capacitance timing of nanoscale split-ring resonators. Based on a simple inductor-capacitor circuit model, we derive an expression, where the inductance is proportional to the area while the capacitance reflects the aspect ratio of the slit. The resonance frequency may thus be tuned by the slit aspect ratio leaving the area, the lattice constant Lambda and nearest-neighbor coupling in periodic structures invariant. Experimental data follow the predictions of the simple LC-model. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3263191]

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Review Nanoscience & Nanotechnology

Image polaritons in van der Waals crystals

Sergey G. Menabde, Jacob T. Heiden, Joel D. Cox, N. Asger Mortensen, Min Seok Jang

Summary: Polaritonic modes in low-dimensional materials enable strong light-matter interactions and the manipulation of light on nanometer length scales. The recent interest in image polaritons in van der Waals crystals has gained considerable attention in nanophotonics, where a polaritonic material couples with its mirror image in close proximity to a highly conductive metal. These image modes provide an appealing nanophotonic platform with lower propagation loss and access to the nonlocal regime of light-matter interaction.

NANOPHOTONICS (2022)

Article Chemistry, Multidisciplinary

Disentangling Cathodoluminescence Spectra in Nanophotonics: Particle Eigenmodes vs Transition Radiation

Saskia Fiedler, P. Elli Stamatopoulou, Artyom Assadillayev, Christian Wolff, Hiroshi Sugimoto, Minoru Fujii, N. Asger Mortensen, Soren Raza, Christos Tserkezis

Summary: Cathodoluminescence spectroscopy in an electron microscope is a versatile tool for analyzing the optical response of plasmonic and dielectric nanostructures. However, the transition radiation produced by electron impact is often neglected. This study demonstrates that transition radiation can generate distinct resonances that interfere constructively or destructively depending on the electron beam's time-of-flight inside the nanosphere, leading to distorted spectra and potentially erroneous modal assignment.

NANO LETTERS (2022)

Article Chemistry, Multidisciplinary

Resonant Laser Printing of Optical Metasurfaces

Xiaolong Zhu, Jacob Engelberg, Sergei Remennik, Binbin Zhou, Jonas Nyvold Pedersen, Peter Uhd Jepsen, Uriel Levy, Anders Kristensen

Summary: This work presents a cost-effective and lithography-free method for printing optical metasurfaces. By utilizing resonant absorption of laser light in an optical cavity formed by a multilayer structure, nearly perfect light absorption is achieved through interferometric control. This approach demonstrates reliability, upscaling, and subwavelength resolution in creating metasurfaces for structural colors, optical holograms, and diffractive optical elements.

NANO LETTERS (2022)

Article Chemistry, Multidisciplinary

Purifying single photon emission from giant shell CdSe/CdS quantum dots at room temperature

Sergii Morozov, Stefano Vezzoli, Alina Myslovska, Alessio Di Giacomo, N. Asger Mortensen, Iwan Moreels, Riccardo Sapienza

Summary: Giant shell CdSe/CdS quantum dots exhibit high brightness and flexibility, with near-unity quantum yield and suppressed blinking. However, their single photon purity is reduced due to efficient multiexcitonic emission. In this study, we observed a significant blueshift in the photoluminescence biexciton spectrum of pure-phase wurtzite quantum dots. By using spectral filtering, we achieved a 2.3 times reduction in biexciton quantum yield while preserving 60% of the exciton single photon emission, leading to an improvement in purity from g2(0)=0.07±0.01 to g2(0)=0.03±0.01. Furthermore, at higher pump fluence, the spectral purification was even more effective, resulting in up to a 6.6 times reduction in g2(0) by suppressing higher order excitons and shell states with larger blueshifts.

NANOSCALE (2023)

Article Engineering, Biomedical

Viscoelastic Capillary Flow Cytometry

Murat Serhatlioglu, Emil Alstrup Jensen, Maria Niora, Anne Todsen Hansen, Christian Friberg Nielsen, Michelle Maria Theresia Jansman, Leticia Hosta-Rigau, Morten Hanefeld Dziegiel, Kirstine Berg-Sorensen, Ian David Hickson, Anders Kristensen

Summary: A compact microfluidic flow cytometer with viscoelastic flow focusing and fiber optical interface is demonstrated. The device allows for easy operation and interchangeable capillaries to achieve single-train particle focusing for a wide range of particle sizes. The system is integrated with optical imaging and other optofluidic modalities and achieves a high throughput of 3500 events s(-1).

ADVANCED NANOBIOMED RESEARCH (2023)

Article Nanoscience & Nanotechnology

Nonlinear Photoluminescence in Gold Thin Films

Alvaro Rodriguez Echarri, Fadil Iyikanat, Sergejs Boroviks, N. Asger Mortensen, Joel D. Cox, F. Javier Garcia de Abajo

Summary: The promising applications of photonics rely on the fabrication of high-quality metal thin films with controlled thickness in the range of a few nanometers. These materials exhibit highly nonlinear response to optical fields due to ultrafast electron dynamics. However, the understanding of this phenomenon on such small length scales is limited. In this study, a new mechanism controlling the nonlinear optical response of thin metallic films is revealed, which is dominated by ultrafast electronic heat transport when the film thickness is sufficiently small. By experimentally and theoretically studying electronic transport in these materials, the researchers explained the observed temporal evolution of photoluminescence in two-pulse correlation measurements. They found that ultrafast thermal dynamics plays a crucial role in determining the strength and time-dependent characteristics of the nonlinear photoluminescence signal. Their findings provide new insights into the nonlinear optical response of nanoscale materials and offer possibilities for controlling and utilizing hot carrier distributions in metallic films.

ACS PHOTONICS (2023)

Article Materials Science, Multidisciplinary

Photon superbunching in cathodoluminescence of excitons in WS2 monolayer

Saskia Fiedler, Sergii Morozov, Leonid Iliushyn, Sergejs Boroviks, Martin Thomaschewski, Jianfang Wang, Timothy J. Booth, Nicolas Stenger, Christian Wolff, N. Asger Mortensen

Summary: Cathodoluminescence spectroscopy combined with second-order auto-correlation measurements of g(2)(tau) allows for extensive study of the synchronization of photon emitters in low-dimensional structures. Co-existing excitons in two-dimensional transition metal dichalcogenide monolayers serve as a great source of identical photon emitters that can be simultaneously excited by an electron. In this study, we demonstrate large photon bunching with g(2)(0) up to 156 +/- 16 in a tungsten disulfide monolayer (WS2), showing a strong dependence on the electron-beam current. By carefully selecting a simple and compact geometry, such as a thin monocrystalline gold nanodisk, we achieve a record-high bunching g(2)(0) of up to 2152 +/- 236, improving the excitation synchronization and electron-emitter interaction. This approach of controlling electron excitation of excitons in a WS2 monolayer enables the synchronization of photon emitters in an ensemble, which is crucial for advancing light information and computing technologies.

2D MATERIALS (2023)

Article Nanoscience & Nanotechnology

Sub-to-super-Poissonian photon statistics in cathodoluminescence of color center ensembles in isolated diamond crystals

Saskia Fiedler, Sergii Morozov, Danylo Komisar, Evgeny A. A. Ekimov, Liudmila F. F. Kulikova, Valery A. A. Davydov, Viatcheslav N. N. Agafonov, Shailesh Kumar, Christian Wolff, Sergey I. I. Bozhevolnyi, N. Asger Mortensen

Summary: Impurity-vacancy centers in diamond provide a class of robust photon sources with versatile quantum properties. The ensembles of color centers have tunable photon-emission statistics and their emission properties can be controlled by different types of excitation. Electron-beam excitation can synchronize the emitters' excitation and control the second-order correlation function g(2)(0), as confirmed by experimental results in this letter. Such a photon source based on an ensemble of few color centers in a diamond crystal offers a highly tunable platform for room temperature informational technologies.

NANOPHOTONICS (2023)

Article Optics

Gain-compensated cavities for the dynamic control of light-matter interactions

Christos Tserkezis, Christian Wolff, Fedor A. Shuklin, Francesco Todisco, Mikkel H. Eriksen, P. A. D. Goncalves, N. Asger Mortensen

Summary: We propose an efficient approach for actively controlling the Rabi oscillations in nanophotonic emitter-cavity analogs based on the presence of an element with optical gain. Inspired by recent developments in parity-time (PT)-symmetry photonics, we show that nano-or microcavities where intrinsic losses are partially or fully compensated by an externally controllable amount of gain offer unique capabilities for manipulating the dynamics of extended (collective) excitonic emitter systems. Furthermore, we show that there is a specific gain value that leads to an exceptional point, where both the emitter and cavity occupation oscillate practically in phase, with occupation numbers that can significantly exceed unity.

PHYSICAL REVIEW A (2023)

Article Materials Science, Multidisciplinary

Halevi?s extension of the Euler-Drude model for plasmonic systems

Gino Wegner, Dan-Nha Huynh, N. Asger Mortensen, Francesco Intravaia, Kurt Busch

Summary: The paper discusses the impact of an extended model proposed by Halevi on the nonlocal response of plasmonic materials and nanostructures. It reevaluates the Mie scattering coefficients for a cylinder and corresponding plasmon-polariton resonances within this framework. The analysis reveals a nonlocal, collisional, and size-dependent damping term that affects the resonances in the extinction spectrum. The implementation of the Halevi model in the time domain is particularly important for efficient and accurate modeling of nanogap structures and other nanoscale features in nanoplasmonics applications.

PHYSICAL REVIEW B (2023)

Article Materials Science, Multidisciplinary

Label-Free Blood Typing by Raman Spectroscopy and Artificial Intelligence

Emil Alstrup Jensen, Murat Serhatlioglu, Cihan Uyanik, Anne Todsen Hansen, Sadasivan Puthusserypady, Morten Hanefeld Dziegiel, Anders Kristensen

Summary: Label-free blood typing using Raman spectroscopy and artificial intelligence was demonstrated in this study. Training an AI model on a dataset of Raman spectra of blood samples allowed classification of ABO blood group, erythrocyte antigens, platelet antigens, antibody titers, and ABH-secretor status. The results show promising potential for future applications in transfusion medicine and blood banking.

ADVANCED MATERIALS TECHNOLOGIES (2023)

Article Chemistry, Multidisciplinary

Reconfigurable chirality with achiral excitonic materials in the strong-coupling regime

P. Elli Stamatopoulou, Sotiris Droulias, Guillermo P. Acuna, N. Asger Mortensen, Christos Tserkezis

Summary: This paper introduces and analyzes the concept of manipulating optical chirality by strongly coupling the optical modes of chiral nanostructures with excitonic transitions in molecular layers or semiconductors. By demonstrating the generation of two spectral branches that retain the object's high chirality density through strong coupling with a nearby excitonic material, the authors propose that post-fabrication manipulation of optical chirality can be achieved. These findings are further verified through simulations of circular dichroism in a realistic chiral architecture.

NANOSCALE (2022)

Proceedings Paper Engineering, Multidisciplinary

Development of a fiber-based microfluidic flow cytometry platform using viscoelastic fluids for polydisperse particle suspensions

Murat Serhatlioglu, Emil Alstrup Jensen, Maria Niora, Anne Todsen Hansen, Christian Friberg Nielsen, Michelle Maria Theresia Jansman, Leticia Hosta-Rigau, Morten Hanefeld Dziegiel, Kirstine Berg-Sorensen, Ian D. Hickson, Anders Kristensen

Summary: Flow cytometry (FC) is a pivotal tool for studying the physical and chemical properties of particles. This study presents a miniaturized optical capillary FC device using the viscoelastic focusing technique. The device can collect and analyze light signals in real-time and can be used for both flow cytometry analysis and microscopy imaging. The device has been successfully used for particle measurements and can be combined with other tools for extended applications.

OPTICAL TRAPPING AND OPTICAL MICROMANIPULATION XIX (2022)

Proceedings Paper Engineering, Multidisciplinary

Data-driven analysis by Raman spectroscopy for ABO blood typing

Emil Alstrup Jensen, Murat Serhatlioglu, Airidas Zukauskas, Cihan Uyanik, Anne Todsen Hansen, Sadasivan Puthusserypady, Morten Hanefeld Dziegiel, Anders Kristensen

Summary: This study presents a multivariate analysis of human-blood samples for ABO blood typing using Raman spectroscopy and support vector machine (SVM) classification. It addresses the issues of expensive and time-consuming traditional ABO blood typing methods, demonstrating the great potential of the developed system for future blood typing applications.

OPTICAL TRAPPING AND OPTICAL MICROMANIPULATION XIX (2022)

Article Optics

Fundamental issues with light propagation through PT-symmetric systems

F. A. Shuklin, C. Tserkezis, N. Asger Mortensen, C. Wolff

Summary: This study analyzes the emergence of unphysical superluminal group velocities in Su-Schrieffer-Heeger (SSH) parity-time (PT) symmetric chains and explores the origins of this behavior. The analysis reveals that material dispersion is the key factor causing the divergence of group velocities. Restoring causality resolves the issue and sets practical limits on the performance of PT-symmetric systems.

PHYSICAL REVIEW A (2022)

No Data Available