4.6 Article

Physical factors controlling the ductility of bulk metallic glasses

Journal

APPLIED PHYSICS LETTERS
Volume 93, Issue 15, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2998410

Keywords

-

Funding

  1. National Science Foundation of China [50704037, 50721003]

Ask authors/readers for more resources

In order to identify key physical factor controlling the deformation and fracture behavior of bulk metallic glasses (BMGs), we compiled and analyzed the elastic moduli and compressive ductility for BMGs. In addition, new modulus data were generated in the critical ranges in order to facilitate the analysis. We have found that the intrinsic ductility of BMGs can be correlated with the bulk-to-shear modulus ratio B/G according to Pugh's [Philos. Mag. 45, 823 (1954)] rule. In some individual BMG systems, for example, Fe based, the relationship seems to be very clear. The physical meaning of this correlation is discussed in terms of atomic bonding and connectivity. (c) 2008 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available