4.5 Article

Performance estimation of graphene field-effect transistors using semiclassical Monte Carlo simulation

Journal

APPLIED PHYSICS EXPRESS
Volume 1, Issue 2, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1143/APEX.1.024002

Keywords

-

Ask authors/readers for more resources

A semiclassical Monte Carlo simulation was run to estimate the performances of a monolayer and a bilayer (with vertical electric field of 1 V/nm applied) graphene-channel field-effect transistor (FET). The vertical field produces a band gap of 0.16eV and gives semiconductive properties in the bilayer graphene. Electrons in monolayer graphene show a notable velocity overshoot of up to 7.6 x 10(7) cm/s. A sub-0.1 ps transit time is also expected in a 65-nm channel device. The performance of a bilayer graphene-channel FET is inferior to a monolayer graphene one, but comparable with that of an InP high electron mobility transistor (HEMT). This lower performance may be attributed to the electron effective mass produced by the vertical field. (C) 2008 The Japan Society of Applied Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available