4.5 Article

Liquid-crystal phase-shifting lateral shearing interferometer with improved fringe contrast for 3D surface profilometry

Journal

APPLIED OPTICS
Volume 52, Issue 25, Pages 6119-6125

Publisher

OPTICAL SOC AMER
DOI: 10.1364/AO.52.006119

Keywords

-

Categories

Ask authors/readers for more resources

We report the development of a common-path and nonmechanical scanning phase-shifting lateral shearing interferometer based on a homogeneous gap and wedge-shaped gap liquid-crystal (LC) cell. The modified cell consists of semi-reflecting and fully reflecting glass plates with LC material sandwiched between them so that the amount of reflected light from both the surfaces is nearly equal, thus generating high contrast interference fringes. The thickness of the LC cell was maintained at similar to 3 mu m uniformly for a homogeneous gap and a varying wedge gap was also introduced between two glass plates. Phase-shifting linear fringe patterns of high contrast were generated. The phase-shifted interferograms were projected onto an object and the distorted interferograms were recorded by a CCD camera. The phase-shifting fringe analysis technique was used to reconstruct the 3D shape of the object. The present system is compact and low cost. (C) 2013 Optical Society of America

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available