4.6 Article

How Can We Help a Patient With a Small Failing Bioprosthesis? An In Vitro Case Study

Journal

JACC-CARDIOVASCULAR INTERVENTIONS
Volume 8, Issue 15, Pages 2026-2033

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.jcin.2015.08.028

Keywords

small bioprosthesis; transcatheter aortic valve; valve-in-valve

Funding

  1. Cardiovascular Fluid Mechanics Laboratory at the Georgia Institute of Technology

Ask authors/readers for more resources

OBJECTIVES The aim of this study was to investigate the hemodynamic performance of a transcatheter heart valve (THV) deployed at different valve-in-valve positions in an in vitro model using a small surgical bioprosthesis. BACKGROUND Patients at high surgical risk with failing 19-mm surgical aortic bioprostheses are not candidates for valve-in-valve transcatheter aortic valve replacement, because of risk for high transvalvular pressure gradients (TVPGs) and patient-prosthesis mismatch. METHODS A 19-mm stented aortic bioprosthesis was mounted into the aortic chamber of a pulse duplicator, and a 23-mm low-profile balloon-expandable THV was deployed (valve-in-valve) in 4 positions: normal (bottom of the THV stent aligned with the bottom of the surgical bioprosthesis sewing ring) and 3, 6, and 8 mm above the normal position. Under controlled hemodynamic status, the effect of these THV positions on valve performance (mean TVPG, geometric orifice area, and effective orifice area), thrombotic potential (sinus shear stress), and migration risk (pullout force and embolization flow rate) were assessed. RESULTS Compared with normal implantation, a progressive reduction of mean TVPG was observed with each supraannular THV position (normal: 33.10 mm Hg; 3 mm: 24.69 mm Hg; 6 mm: 19.16 mm Hg; and 8 mm: 12.98 mm Hg; p < 0.001). Simultaneously, we observed increases in geometric orifice area (normal: 0.83 cm(2); 8 mm: 1.60 cm(2); p < 0.001) and effective orifice area (normal: 0.80 cm2; 8 mm: 1.28 cm(2); p < 0.001) and reductions in sinus shear stresses (normal: 153 dyne/cm(2); 8 mm: 40 dyne/cm(2); p < 0.001), pullout forces (normal: 1.55 N; 8 mm: 0.68 N; p < 0.05), and embolization flow rates (normal: 32.91 l/min; 8 mm: 26.06 l/min; p < 0.01). CONCLUSIONS Supra-annular implantation of a THV in a small surgical bioprosthesis reduces mean TVPG but may increase the risk for leaflet thrombosis and valve migration. A 3- to 6-mm supra-annular deployment could be an optimal position in these cases. (C) 2015 by the American College of Cardiology Foundation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available