4.7 Article

An approximation-based approach for fuzzy multi-period production planning problem with credibility objective

Journal

APPLIED MATHEMATICAL MODELLING
Volume 34, Issue 11, Pages 3202-3215

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.apm.2010.02.013

Keywords

Production planning; Credibility; Approximation scheme; Neural network; Particle swarm optimization

Funding

  1. Program for One Hundred Excellent and Innovative Talents in Colleges and Universities of Hebei Province
  2. National Natural Science Foundation of China (NSFC) [60974134]

Ask authors/readers for more resources

This paper develops a fuzzy multi-period production planning and sourcing problem with credibility objective, in which a manufacturer has a number of plants or subcontractors. According to the credibility service levels set by customers in advance, the manufacturer has to satisfy different product demands. In the proposed production problem, production cost, inventory cost and product demands are uncertain and characterized by fuzzy variables. The problem is to determine when and how many products are manufactured so as to maximize the credibility of the fuzzy costs not exceeding a given allowable invested capital, and this credibility can be regarded as the investment risk criteria in fuzzy decision systems. In the case when the fuzzy parameters are mutually independent gamma distributions, we can turn the service level constraints into their equivalent deterministic forms. However, in this situation the exact analytical expression for the credibility objective is unavailable, thus conventional optimization algorithms cannot be used to solve our production planning problems. To overcome this obstacle, we adopt an approximation scheme to compute the credibility objective, and deal with the convergence about the computational method. Furthermore, we develop two heuristic solution methods. The first is a combination of the approximation method and a particle swarm optimization (PSO) algorithm, and the second is a hybrid algorithm by integrating the approximation method, a neural network (NN), and the PSO algorithm. Finally, we consider one 6-product source, 6-period production planning problem, and compare the effectiveness of two algorithms via numerical experiments. (C) 2010 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available