4.5 Article

Dynamic clustering using combinatorial particle swarm optimization

Journal

APPLIED INTELLIGENCE
Volume 38, Issue 3, Pages 289-314

Publisher

SPRINGER
DOI: 10.1007/s10489-012-0373-9

Keywords

Combinatorial particle swarm optimization; Combinatorial optimization problems; Partitional clustering; Dynamic clustering

Ask authors/readers for more resources

Combinatorial Particle Swarm Optimization (CPSO) is a relatively recent technique for solving combinatorial optimization problems. CPSO has been used in different applications, e.g., partitional clustering and project scheduling problems, and it has shown a very good performance. In partitional clustering problem, CPSO needs to determine the number of clusters in advance. However, in many clustering problems, the correct number of clusters is unknown, and it is usually impossible to estimate. In this paper, an improved version, called CPSOII, is proposed as a dynamic clustering algorithm, which automatically finds the best number of clusters and simultaneously categorizes data objects. CPSOII uses a renumbering procedure as a preprocessing step and several extended PSO operators to increase population diversity and remove redundant particles. Using the renumbering procedure increases the diversity of population, speed of convergence and quality of solutions. For performance evaluation, we have examined CPSOII using both artificial and real data. Experimental results show that CPSOII is very effective, robust and can solve clustering problems successfully with both known and unknown number of clusters. Comparing the obtained results from CPSOII with CPSO and other clustering techniques such as KCPSO, CGA and K-means reveals that CPSOII yields promising results. For example, it improves 9.26 % of the value of DBI criterion for Hepato data set.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available