4.5 Article

The effect of sinusoidal rolling ground motion on lifting biomechanics

Journal

APPLIED ERGONOMICS
Volume 42, Issue 1, Pages 131-137

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.apergo.2010.06.001

Keywords

Lifting biomechanics; Ground motion; Fishing industry

Funding

  1. National Institute for Occupational Safety and Health (NIOSH) [R01-0H008249]

Ask authors/readers for more resources

The objective of this study was to quantify the effects of ground surface motion on the biomechanical responses of a person performing a lifting task. A boat motion simulator (BMS) was built to provide a sinusoidal ground motion (simultaneous vertical linear translation and a roll angular displacement) that simulates the deck motion on a small fishing boat. Sixteen participants performed lifting, lowering and static holding tasks under conditions of two levels of mass (5 and 10 kg) and five ground moving conditions. Each ground moving condition was specified by its ground angular displacement and instantaneous vertical acceleration: A): +6 degrees, 0.54 m/s(2); B): +3 degrees, -0.27 m/s(2); C): 0 degrees, 0 m/s(2); D): 3 degrees, 0.27 m/s(2); and E): -6 degrees, 0.54 m/s(2). As they performed these tasks, trunk kinematics were captured using the lumbar motion monitor and trunk muscle activities were evaluated through surface electromyography. The results showed that peak sagittal plane angular acceleration was significantly higher in Condition A than in Conditions C, D and E (698 degrees/s(2) vs. 612-617 degrees/s(2)) while peak sagittal plane angular deceleration during lowering was significantly higher in moving conditions (conditions A and E) than in the stationary condition C (538-542 degrees/s(2) vs. 487 degrees/s(2)). The EMG results indicate that the boat motions tend to amplify the effects of the slant of the lifting surface and the external oblique musculature plays an important role in stabilizing the torso during these dynamic lifting tasks. (C) 2010 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available