4.8 Article Proceedings Paper

Simulating a future smart city: An integrated land use-energy model

Journal

APPLIED ENERGY
Volume 112, Issue -, Pages 1466-1474

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2013.01.061

Keywords

Smart city; Compact city; Land use-transportation-energy model; Urban scenarios; Photovoltaic (PV)

Ask authors/readers for more resources

Designing a future smart city (FSC) that copes with the reduction of CO2 has become one of the urgent tasks of the next 20 years. One promising approach to achieve FSC is to combine appropriate land use (compact city with energy efficient buildings and photovoltaic panels (PVs)), transportation (electric vehicles (EVs) and public transportation system) and energy systems (smart grid systems), because of the interaction between these elements. However, there are few models which simulate these elements in an integrated manner. This paper presents the concept of the integrated model, and shows the land use-energy part of the model created for the Tokyo metropolitan area, which is the largest Mega city in the world. Firstly, a spatially explicit land use model (urban economic model) is constructed for the study area, and the model is calibrated using existing statistical data. Secondly, possible future compact/dispersion city scenarios for the year 2050 are created using the model. Thirdly, intra-day dynamics (hourly) of electricity demand and supply from PVs, which is assumed to be installed to the roofs of all detached houses in the study area, under two urban scenarios is simulated. The obtained results suggest that [1] compact urban form may contribute to the reduction of electricity demand from the residential sector, but [2] PV-supply under the scenario may also be reduced because of the decreased share of detached houses. Hence in the compact city scenario, it is important to discuss the effective use of vacant areas in suburbs, which may be used for large PV installations, or be re-vegetated to mitigate urban heat island effects. (C) 2013 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available