4.7 Article

Preparation of cetylpyridinium montmorillonite for antibacterial applications

Journal

APPLIED CLAY SCIENCE
Volume 72, Issue -, Pages 201-205

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.clay.2013.01.010

Keywords

Antibacterial activity; Montmorillonite; Cetylpyridinium chloride; Adsorption-desorption; Staphylococcus aureus; Pseudomonas aeruginosa

Ask authors/readers for more resources

The antibacterial activities of cetylpyridinium-montmorillonites (CP+-Mt) were tested on Staphylococcus aureus and Pseudomonas aeruginosa. The Mt were prepared by using the five different CP+ amounts of 0.5, 0.7, 1.0, 1.5, and 2.0 times of cation exchange capacities (CEC) of Na+-Mt. Desorption of CP+ from the surface was also determined by successive adsorption-desorption experiments. The antibacterial activity tests were conducted by using Na+-Mt and CP+-Mt through the disk diffusion (Kirby-Bauer) method against the P. aeruginosa ATCC 27853, and S. aureus ATCC 29213 strains. XRD analyses of the CP+-Mt showed that basal spacing regularly increased by increasing the amount of CP+ cations. Adsorption/desorption studies revealed that desorption occurred only in 2.0 CEC CP+-Mt by dilution with water and in 1.0 CEC CP+-Mt at a pH of 2.0. Nat(+)-Mt exhibited no antibacterial activity against both bacteria. All of the CP+-Mt samples prepared were active against S. aureus, whereas they had no antibacterial activity against P. aeruginosa. Minimum inhibitory concentration (MIC) was found to be 1 mg/plate against S. aureus, determined with 0.5 CEC CP+-Mt. Because nearly no desorption of CP+ was observed, the antibacterial activity was attributed to the CP+ bound to the Mt surface. (c) 2013 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Chemistry, Physical

SURFACE AND INTERFACE PROPERTIES OF LAUROYL SARCOSINATE-ADSORBED CP+-MONTMORILLONITE

Saadet Yapar, Gunseli Ozdemir, Alejandra M. Fernandez Solarte, Rosa M. Torres Sanchez

CLAYS AND CLAY MINERALS (2015)

Article Chemistry, Physical

The antibacterial effect of heavy metal and cetylpridinium-exchanged montmorillonites

Guenseli Ozdemir, Mine Hosgoer Limoncu, Saadet Yapar

APPLIED CLAY SCIENCE (2010)

Article Engineering, Environmental

Adsorption and desorption behavior of copper ions on Na-montmorillonite: Effect of rhamnolipids and pH

Gunseli Ozdemir, Saadet Yapar

JOURNAL OF HAZARDOUS MATERIALS (2009)

Article Chemistry, Physical

Synthesis and Characterization of Non-leaching Inorgano- and Organo-montmorillonites and their Bactericidal Properties Against Streptococcus Mutans

Asli Sahiner, Gunseli Ozdemir, T. Hakan Bulut, Saadet Yapar

Summary: The direct application of heavy metal- and quaternary ammonium-based antibacterial agents can cause inconvenience and environmental concerns. This study immobilized these agents on montmorillonite to enhance their antibacterial activity and reduce the negative effects. The results showed that a linear alkyl chain and a double aromatic ring structure had the greatest antibacterial effect, making them promising candidates for biomedical applications.

CLAYS AND CLAY MINERALS (2022)

Article Engineering, Chemical

Modeling of single and binary adsorption of lead and cadmium ions onto modified olive pomace

Onur Uzunkavak, Maria Silvina Patterer, Franco Medici, Gunseli Ozdemir

DESALINATION AND WATER TREATMENT (2019)

Article Engineering, Chemical

Mechanisms of para-chlorophenol adsorption onto activated carbons having different textural and chemical properties

Etelka David, Marius Sebastian Secula, Gunseli Ozdemir, Ioan Mamaliga

DESALINATION AND WATER TREATMENT (2017)

Article Biophysics

Keratin-rhamnolipids and keratin-sodium dodecyl sulfate interactions at the air/water interface

G. Ozdemir, O. E. Sezgin

COLLOIDS AND SURFACES B-BIOINTERFACES (2006)

Article Biophysics

Wetting characteristics of aqueous rhamnolipids solutions

G Özdemir, U Malayoglu

COLLOIDS AND SURFACES B-BIOINTERFACES (2004)

Article Biophysics

Effect of electrolytes on the surface behavior of rhamnolipids R1 and R2

SS Helvaci, S Peker, G Özdemir

COLLOIDS AND SURFACES B-BIOINTERFACES (2004)

Article Chemistry, Physical

Effect of pH on the surface and interfacial behavior of rhamnolipids R1 and R2

G Özdemir, S Peker, SS Helvaci

COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS (2004)

Article Chemistry, Multidisciplinary

Interface-subphase interactions of rhamnolipids in aqueous rhamnose solutions

S Peker, S Helvaci, G Özdemir

LANGMUIR (2003)

Article Biophysics

Free thin liquid films (foam films) from rhamnolipids: type of the film and stability

R Cohen, G Ozdemir, D Exerowa

COLLOIDS AND SURFACES B-BIOINTERFACES (2003)

Article Chemistry, Physical

Impacts of chemical pre-treatments on the hydrogen isotope composition of clay minerals: Determining potential effects in the absence of impurities

Nadine J. Kanik, Artur Kuligiewicz, Jeffrey T. Cullen

Summary: This study examined the effects of different pre-treatments on the structural H-isotope composition of clay minerals. The results showed that different pre-treatments had varied impacts on different clay minerals, and the choice of pre-treatment should be based on the specific properties and mineralogy of the samples.

APPLIED CLAY SCIENCE (2024)

Article Chemistry, Physical

Coating of silk sutures by Halloysite/wax Pickering emulsions for controlled delivery of eosin

Lorenzo Lisuzzo, Giuseppe Cavallaro, Stefana Milioto, Giuseppe Lazzara

Summary: This study proposes Pickering emulsions based on wax and halloysite clay nanotubes for coating silk sutures to increase their loading capacity towards eosin. The presence of halloysite/wax microspheres on the surface of silk sutures has also been explored for controlled release of hydrophobic drugs. The influence of the coating on the thermal and mechanical properties of the sutures has been studied using various techniques. In conclusion, the wax/halloysite Pickering emulsions can successfully generate hydrophobic microdomains on the surface of silk sutures, leading to enhanced flexibility and improved loading capacity towards eosin.

APPLIED CLAY SCIENCE (2024)

Article Chemistry, Physical

Polymer nanocomposites to modify crude oil waxy crystallization: Influence of content and type of clay (mineral)

Bruna F. Alves, Rita C. P. Nunes, Luiz C. Bertolino, Elizabete F. Lucas

Summary: Operational problems in the oil industry caused by the precipitation of paraffins can be prevented by using polymeric additives. This article evaluates the use of polymeric nanocomposites as pour point reducers in different types of crude oil and finds that they are more efficient than pure poly(ethylene-covinyl acetate) (EVA) in reducing the pour point. The nanocomposites also modify the wax crystals and reduce the viscosity of the oil samples.

APPLIED CLAY SCIENCE (2024)

Article Chemistry, Physical

Bentonite homogenisation and swelling: The effect of salinity

K. A. Daniels, C. C. Graham, A. C. Wiseall, J. F. Harrington, P. Sellin

Summary: Geological storage with clay buffer is widely preferred for removing hazardous radioactive waste. The impact of fluid salinity and void space on the swelling behavior of barrier bentonites was examined through experiments. The findings suggest that clay swelling is suppressed at higher salinities, which affects the void-filling process.

APPLIED CLAY SCIENCE (2024)

Article Chemistry, Physical

Rehydroxylation of calcined swellable clay minerals at ambient conditions

N. Werling, A. Kuligiewicz, A. Steudel, R. Schuhmann, F. Dehn, K. Emmerich

Summary: Thermal treatment of clay minerals can be used to produce building materials and environmentally friendly binders. This process involves dehydration, dehydroxylation, breakdown of structure, and recrystallization of high temperature phases. Rehydration and rehydroxylation are important factors to consider for geopolymers and SCM.

APPLIED CLAY SCIENCE (2024)

Article Chemistry, Physical

Preparation of a UV anti-aging and superhydrophobic self-cleaning coating by loading nano-rutile on sericite and being modified with HDTMS

Xuan Wang, Hao Ding, Zhuoqun Xu, Jianmeng Zhang, Yanbin Yao

Summary: Rutile nano-TiO2 was loaded onto the surface of sericite to prepare sericite-rutile composite particles, which were then modified with HDTMS and sprayed onto the substrates to form sericite-rutile/HDTMS composite coatings with UV shielding and superhydrophobic self-cleaning properties. The coating exhibited good UV shielding rate and remained superhydrophobic after UV irradiation. The hierarchical structure of the sericite-rutile composite and the low surface energy of HDTMS contributed to the superhydrophobicity and UV shielding effect of the coating.

APPLIED CLAY SCIENCE (2024)

Article Chemistry, Physical

Chitosan-Pd0 nanoparticles encapsulated in Al, Co-pillared montmorillonite by one-pot process

Kailang Sun, Taojun Zhang, Jie Zhou, Yonghong Liu, Minfeng Zeng, Zhen Yang, Ruokun Feng, Xiaorong Ren, Peng Zhang, Baoyi Wang, Xingzhong Cao

Summary: Chitosan-Pd0 nano particles encapsulated in Al, Co-pillared montmorillonite nanocomposites were successfully synthesized using a facile one-pot heat treatment method. The Al, Co pillaring effectively expanded the surface area and generated numerous mesopores in the interlayer space of the MMt. The resultant nanocomposite exhibited similar high comprehensive catalytic performances as the one prepared by the regular divided-multistep method. The encapsulation of CS chains and doping of Co in the Al pillaring also contributed to the improved catalytic performance.

APPLIED CLAY SCIENCE (2024)

Article Chemistry, Physical

Environmental significance of kaolinite variability over the last centuries in crater lake sediments from Central Mexico

Nathalie Fagel, Isabel Israde-Alcantara, Reza Safaierad, Marttiina Rantala, Sabine Schmidt, Gilles Lepoint, Pierre Pellenard, Nadine Mattielli, Sarah Metcalfe

Summary: Environmental conditions significantly influence clay minerals, and studying clay sediments in tropical lakes can provide valuable insights into past environmental conditions. In this study, multiproxy records from sediment cores of three crater lakes in central Mexico were analyzed. The results showed that disordered kaolinite, formed through hydrolysis and hydrothermal alteration, was the predominant mineral in the sediments. The abundance of kaolinite varied in relation to organic carbon and organic matter-related elements, and showed opposite trends with lithogenic elements. Geochemical data suggested that the increase in kaolinite abundance is linked to the formation of organo-mineral aggregates and lake level changes in closed basins.

APPLIED CLAY SCIENCE (2024)

Article Chemistry, Physical

The influence of alkyl ammonium modifiers on the microstructure and high-pressure rheology of sepiolite-vegetable oil dispersions

M. J. Martin-Alfonso, A. Mejia, F. J. Martinez-Boza, P. Partal

Summary: The drilling industry is facing new challenges to develop eco-friendlier drilling fluids. Organic modified sepiolite dispersed in oil can be an excellent additive with suitable rheological properties. This study investigated the effect of alkyl ammonium modifiers on the microstructure and rheological properties of sepiolite-vegetable oil dispersions under high-temperature and high-pressure conditions.

APPLIED CLAY SCIENCE (2024)

Article Chemistry, Physical

A novel insight of interaction mechanism of carboxymethyl cellulose with talc surface: A combined molecular dynamic simulation and DFT investigation

Weiquan Zhan, Siyuan Yang, Shenxu Bao, Liuyi Ren, Cheng Liu

Summary: The interaction between talc and the depressor CMC was investigated through molecular dynamics simulation and density functional theory calculation. It was found that CMC showed stronger adsorption on the edge plane of talc due to enhanced interactions with polar groups and water molecules. The study also revealed specific interactions between H atoms in CMC and O atoms in the edge plane, as well as between O atoms in CMC and Si, Mg atoms in the edge plane. Hydration shells on the basal and edge planes of talc were examined to explain the phenomenon.

APPLIED CLAY SCIENCE (2024)

Article Chemistry, Physical

In-depth descriptive investigation of composite sorbent based self-assembled magnetic halloysite nanotube-graphene oxide: Actual use case study for rutin

Pierre Dramou, Yiyang Sun, Xu Ni, Fangqi Wang, Hua He

Summary: In this study, a magnetic nanocomposite was prepared and used for the separation of rutin from real samples through magnetic solid phase extraction (MSPE). The nanocomposite exhibited high specific surface area, chemical and thermal stability, water solubility, and easy separation in aqueous solution. Characterization and experiments confirmed the successful synthesis and efficient enrichment ability of the nanocomposite.

APPLIED CLAY SCIENCE (2024)