4.6 Article

Palladium supported on triazolyl-functionalized polysiloxane as recyclable catalyst for Suzuki-Miyaura cross-coupling

Journal

APPLIED CATALYSIS A-GENERAL
Volume 470, Issue -, Pages 24-30

Publisher

ELSEVIER
DOI: 10.1016/j.apcata.2013.10.032

Keywords

Palladium; Suzuki-Miyaura reaction; Functionalized polysiloxane; Pd(0) nanoparticles

Funding

  1. National Science Foundation (NCN) [2012/05/B/ST5/00265]

Ask authors/readers for more resources

Two palladium catalysts obtained in reaction of Pd(OAc)(2) with differently substituted triazolyl polysiloxanes were used in the Suzuki-Miyaura cross-coupling of aryl bromides with phenylboronic acid. Catalytic reactions, performed at 600 degrees C in a 2-propanol-water mixture, led to high yields of cross-coupling products when 2- and 4-bromotoluene, bromobenzene, and 2-bromoanisole were used as substrates. In recycling experiments, very good results were obtained in eight subsequent runs. High yield of 2-methylbiphenyl was also obtained with catalysts formed in situ, from Pd(OAc)2 and polysiloxane. In these experiments, an inhibiting effect of free polymers containing butyl substituents on triazole rings was discovered. Under the same conditions, in the presence of polysiloxane functionalized with phenyl-substituted triazole, the yield of 2-methylbiphenyl remained on the level of 98-100%. The application of the TEM method to the catalysts recovered from the reaction mixture evidenced the presence of Pd(0) nanoparticles bonded to triazolyl polysiloxane. The participation of unstabilized Pd(0) forms in the reaction course was concluded from the results of the Hg(0) test. (C) 2013 Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Biochemistry & Molecular Biology

Photoactive Liposomal Formulation of PVP-Conjugated Chlorin e6 for Photodynamic Reduction of Atherosclerotic Plaque

Wojciech Kalas, Edyta Wysokinska, Magdalena Przybylo, Marek Langner, Agnieszka Ulatowska-Jarza, Dariusz Bialy, Magdalena Wawrzynska, Ewa Ziolo, Wojciech Gil, Anna M. Trzeciak, Halina Podbielska, Marta Kopaczynska

INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES (2019)

Editorial Material Chemistry, Inorganic & Nuclear

Celebrating the 150th Anniversary of the Periodic Table of Chemical Elements: 5th EuChemS Inorganic Chemistry Conference

Yulia G. Gorbunova, Luis A. Oro, Anna M. Trzeciak, Alexander A. Trifonov

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY (2019)

Article Chemistry, Inorganic & Nuclear

Synthesis and Catalytic Evaluation of Phosphanylferrocene Ligands with Cationic Guanidinium Pendants and Varied Phosphane Substituents

Ondrej Barta, Ivana Cisarova, Ewa Mieczynska, Anna M. Trzeciak, Petr Stepnicka

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY (2019)

Article Chemistry, Physical

Efficient hydroarylation of terminal alkynes with sodium tetraphenylborate performed in water under mild conditions

P. Kociecka, A. M. Trzeciak

APPLIED CATALYSIS A-GENERAL (2020)

Article Chemistry, Applied

The Heck synthesis of β-arylated ketones catalyzed by palladium immobilized on functional polysiloxane microspheres

A. Wirwis, U. Mizerska, M. Cypryk, A. M. Trzeciak

APPLIED ORGANOMETALLIC CHEMISTRY (2020)

Article Chemistry, Physical

Solvent switchable Pd/DNA catalyst in carbonylative Sonogashira coupling

M. Mart, A. M. Trzeciak

MOLECULAR CATALYSIS (2020)

Article Materials Science, Paper & Wood

Influence of polysiloxane microspheres on hydrophobicity, structure and mechanical properties of paper materials

Piotr Pospiech, Konrad Olejnik, Urszula Mizerska, Joanna Zakrzewska

Summary: The study aims to investigate the impact of three types of polysiloxane microspheres on paper's barrier properties, structure, and mechanical properties. Findings show that hydrophilic microspheres improved liquid penetration uniformity, while small hydrophobic microspheres significantly enhanced paper's hydrophobicity without affecting mechanical properties.

CELLULOSE (2021)

Article Chemistry, Physical

Pd-Nanocomposites Formed by Calcination of [Pd(2-pymo)2]n Framework as Catalysts of Phenylacetylene Semihydrogenation in Water

Adam W. Augustyniak, Anna M. Trzeciak

Summary: Pd-nanocomposites fabricated from MOF showed enhanced catalytic activity and stability in the transfer hydrogenation of phenylacetylene, outperforming the pristine MOF material.

CHEMCATCHEM (2021)

Article Chemistry, Physical

The synthesis of ?-enaminones using trialkylamines and a Pd/DNA catalyst

M. Mart, A. M. Trzeciak

Summary: A new one-pot procedure for synthesizing β-enaminones was developed using a Pd/DNA catalyst and tertiary amine sources, resulting in successful synthesis of the target product and efficient recovery and reuse of the catalyst. The reaction mechanism involving the activity of immobilized Pd NPs was proposed.

MOLECULAR CATALYSIS (2021)

Article Chemistry, Inorganic & Nuclear

Phenylacetylene semihydrogenation over a palladium pyrazolate hydrogen-bonded network

Adam W. Augustyniak, Anna M. Trzeciak

Summary: The palladium azolate/carboxylate network, Pd-dmpzc, catalyzes the selective hydrogenation of phenyl-acetylene to styrene in water. Under optimized conditions, Pd-dmpzc provided better results than other palladium catalysts, with analysis showing the presence of different Pd2+ species and Pd-0 NPs contributing to the catalytic reaction.

INORGANICA CHIMICA ACTA (2021)

Article Chemistry, Inorganic & Nuclear

Highly selective hydrogenation of aromatic ketones to alcohols in water: effect of PdO and ZrO2

W. Alsalahi, W. Tylus, A. M. Trzeciak

Summary: Pd/ZrO2 and PdO/ZrO2 composites show enhanced activity and selectivity in the hydrogenation reaction of acetophenone in aqueous solution.

DALTON TRANSACTIONS (2021)

Article Chemistry, Inorganic & Nuclear

Immobilization of Rh(I) precursor in a porphyrin metal-organic framework - turning on the catalytic activity

Anna M. Szczepkowska, Mateusz Janeta, Milosz Siczek, Wlodzimierz Tylus, Anna M. Trzeciak, Wojciech Bury

Summary: Two model porphyrin metal-organic frameworks were utilized for the incorporation of Rh(I) species through post-synthetic metallation, resulting in the synthesis and structural characterization of new rhodium MOFs (Rh/MOFs), Rh/PCN-222 and Rh/NU-1102. These Rh/MOFs were demonstrated to be active heterogeneous catalysts for the hydrogenation of unsaturated hydrocarbons at mild reaction conditions, with an activation step required during the initial run of the catalytic process. In situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) was utilized to monitor the activation pathway of the catalyst under a H-2 atmosphere.

DALTON TRANSACTIONS (2021)

Article Chemistry, Multidisciplinary

Effect of solvent in the hydrogenation of acetophenone catalyzed by Pd/S-DVB

Tomasz Bereta, Ewa Mieczynska, Sylwia Ronka, Wlodzimierz Tylus, Anna M. Trzeciak

Summary: In the hydrogenation of acetophenone catalyzed by a new Pd/S-DVB catalyst, a solvent effect was found to impact the reaction efficiency. The solvent's hydrogen-bond-acceptance capacity correlates with the conversion of acetophenone, and binary mixtures of alcohol and water significantly decrease the reaction efficiency due to the microheterogeneity and blocking of the catalyst surface.

NEW JOURNAL OF CHEMISTRY (2021)

Article Chemistry, Physical

Enhancing oxygen reduction reaction with Pt-decorated Cu@Pd and high-entropy alloy catalysts: Insights from first-principles analysis of Pt arrangement

Ming-Yi Chen, Ngoc Thanh Thuy Tran, Ahmed Abubakar Alao, Wen-Dung Hsu

Summary: This study demonstrates the significance of surface Pt atom arrangement for the efficiency of ORR in PEMFCs and reveals the correlation between Pt-Pt average distance and O2 dissociation barrier. Furthermore, the study discovers a robust correlation between the level of the catalyst's d-band center and O2 adsorption energy. High-entropy alloy substrates provide potential for controlling Pt arrangement and O2 dissociation barrier.

APPLIED CATALYSIS A-GENERAL (2024)

Article Chemistry, Physical

MOF-catalyzed hydroxyalkylation-alkylation reaction for the controlled synthesis of furan oligomers

Eduardo C. Atayde Jr, Babasaheb M. Matsagar, Yu-Cheng Wang, Kevin C. -W. Wu

Summary: This study presents the first application of an acidic MOF, Sulfated MOF-808, in catalyzing the HAA reactions of furan oligomers for the production of biofuel precursors. The catalyst showed high yield, selectivity, and recyclability, making it versatile for different starting materials.

APPLIED CATALYSIS A-GENERAL (2024)

Article Chemistry, Physical

Dehydrogenation of ethylbenzene to styrene over magnesium-doped hematite catalysts

Maria do Carmo Rangel, Francieli Martins Mayer, Soraia Jesus de Oliveira, Sergio Gustavo Marchetti, Fabricio Luiz Faita, Doris Ruiz, Giovanni Saboia, Mariana Kieling Dagostini, Jonder Morais, Maria do Carmo Martins Alves

Summary: This study developed a new catalyst by investigating the effect of magnesium on the catalytic properties of hematite in ethylbenzene dehydrogenation. The catalyst showed important differences in activity, selectivity, and stability, making it a promising candidate for commercial applications.

APPLIED CATALYSIS A-GENERAL (2024)

Article Chemistry, Physical

Selective oxidation of methacrolein to methacrylic acid over CsH3PMo11VO40 with structural defects

Yanjun Li, Qian Wang, Hui Tian, Mingyuan Zhu, Yuanyuan Liu

Summary: A novel strategy using microwave-assisted precipitation was proposed to prepare defective CsH3PMo11VO40 catalyst for the oxidation of methacrolein to methacrylic acid. Microwave treatment accelerates crystallization, increases vanadyl species content, and forms defective Keggin structures, thereby enhancing the oxidation capacity of the catalyst.

APPLIED CATALYSIS A-GENERAL (2024)

Article Chemistry, Physical

Novel acidic ionic liquid [BEMIM][HSO4]: A highly efficient and recyclable catalyst for the synthesis of bis-indolyl methane derivatives

Rajeshwari Athavale, Sailee Gardi, Fatima Choudhary, Dayanand Patil, Nandkishor Chandan, Paresh More

Summary: In this study, a novel acidic ionic liquid catalyst was prepared and used for the synthesis of bis-indolyl methane derivatives. The catalyst exhibited short reaction times, easy purification, and reusability.

APPLIED CATALYSIS A-GENERAL (2024)

Article Chemistry, Physical

The chemical state and Cu plus stability for three-way catalytic performance of Cu-added Al2O3 catalysts

Masatomo Hattori, Takato Hattori, Masakuni Ozawa

Summary: Cu-added gamma-Al2O3 catalysts were prepared with varying Cu loadings and the effects of copper oxidation states on catalytic activity were investigated. The results showed that the addition of copper increased the catalyst activity, but excessive copper loading decreased catalytic activity. XRD and TEM analysis indicated the formation of a solid solution of copper oxide species on the surface of gamma-Al2O3. XAS and TPR data demonstrated variations in copper oxidation states among the catalysts.

APPLIED CATALYSIS A-GENERAL (2024)

Article Chemistry, Physical

Enhanced oxygen reduction catalytic performance of PtNi alloy through modulating metal-support interaction

Liwei Fang, Shiyang Niu, Shengsen Wang, Yiqing Lu, Yuanhui Cheng

Summary: In this study, PtNi alloy on nitrogen-doped carbon and SnO2 dual-support was designed to modulate the metal-support interaction, resulting in improved catalytic activity and stability for oxygen reduction reaction. The SnO2/PtNi/NC catalyst exhibited a strongly coupled interface, enhanced electron transfer, and higher half-wave potential compared to PtNi/NC and commercial Pt/C.

APPLIED CATALYSIS A-GENERAL (2024)

Article Chemistry, Physical

Selective hydrogenation of carbon dioxide to light hydrocarbons over ZnZrOX/H-MFI composite catalyst with long-term stability

Shohei Harada, Duanxing Li, Kenta Iyoki, Masaru Ogura

Summary: This study investigates the catalytic performance of a composite catalyst composed of ZnZrOX and H-zeolite for the hydrogenation of CO2. The deactivation of the composite catalyst is influenced by ion exchange of Zn2+ and/or coke, with their effects differing based on the zeolite structure. Separating the grains of the composite catalyst can prevent deactivation.

APPLIED CATALYSIS A-GENERAL (2024)

Article Chemistry, Physical

CO2 hydrogenation to methanol over ceria-zirconia NiGa alloy catalysts

Laura Proano, Christopher W. Jones

Summary: In this study, NiGa alloy particles supported on CeO2, ZrO2, and ZrO2-CeO2 solid solutions were prepared and characterized. The nature of the support was found to have a significant influence on the catalyst's activity and selectivity, with the crystalline structure of ZrO2 having the greatest impact. Pure ZrO2 showed the highest methanol selectivity and CO2 conversion at high Zr:Ce ratios. In equimolar and Ce-rich conditions, basic sites and oxygen vacancies were found to be the key parameters affecting methanol production.

APPLIED CATALYSIS A-GENERAL (2024)

Article Chemistry, Physical

Reductive amination of 1,6-hexanediol with a modified Ru/Al2O3 catalyst

Liyan Zhang, Yinze Yang, Leilei Zhou, Fengyu Zhao, Haiyang Cheng

Summary: 1,6-Hexamethylenediamine was successfully synthesized via the reductive amination of 1,6-hexanediol using a Ru/PRL(x)-Al2O3 catalyst. The highly dispersed and anchored Ru species, formed by 1,10-phenanthroline (PRL), played a crucial role in the catalytic reaction. The formation of new acid-base pairs, electron deficient Ru species, and smaller nanoparticles contributed to the improved catalytic performances of the Ru/PRL-Al2O3 catalyst.

APPLIED CATALYSIS A-GENERAL (2024)

Article Chemistry, Physical

Longevity increase of an impregnated Ni/CeO2-Al2O3 dry reforming catalyst by indium

Anita Horvath, Miklos Nemeth, Andrea Beck, Gyorgy Safran, Valeria La Parola, Leonarda Francesca Liotta, Gregor Zerjav, Matevz Roskaric, Albin Pintar

Summary: This study investigates the catalytic and structural changes caused by the addition of 0.25 wt% indium in a 3% Ni/CeO2-Al2O3 catalyst prepared by impregnation method. The results show that the addition of indium can decrease the activity of the catalyst, but it improves its stability and reduces coking.

APPLIED CATALYSIS A-GENERAL (2024)

Article Chemistry, Physical

Harnessing reactive hydrogen species via H2O2 photolysis for reduction of CO2 to CH3OH using CaIn2S4@ZnMOF photocatalyst

Ankush Kularkar, Vaibhav Vilas Khedekar, Sachin D. Chaudhari, Mudavath Ravi, Sadhana S. Rayalu, Penumaka Nagababu

Summary: Efficiently addressing the challenges of photocatalytic CO2 reduction to CH3OH is crucial. This study developed Zn-BTC MOF and its composites with CaIn2S4, achieving highly efficient and robust photocatalytic CO2 reduction to CH3OH under ambient conditions, using H2O2 as the hydrogen source. Among the composites, ZMCIS4 demonstrated excellent performance with a CH3OH evolution of 49100 μmol/g.cat and a quantum efficiency of approximately 78.41%. The enhanced performance was attributed to the production of nascent hydrogen atoms (H center dot) through the photo-splitting of H2O2 on the ZMCIS surface.

APPLIED CATALYSIS A-GENERAL (2024)

Article Chemistry, Physical

Numerous active sites in self-supporting Co3O4 nanobelt array for boosted and stabilized 5-hydroxymethylfurfural electro-oxidation

Dan Liu, Yudong Li, Chengyu Wang, Haiyue Yang, Rong Wang, Shujun Li, Xiaohui Yang

Summary: In this study, a self-supporting three-dimensional porous Co3O4 nanobelt array decorated on nickel foam (P-Co3O4 -NBA@NF) electrode with numerous active sites was successfully constructed for the oxidation of 5-Hydroxymethylfurfural (HMF) to 2,5-furan dicarboxylic acid (FDCA). The P-Co3O4 -NBA@NF electrode demonstrated high conversion efficiency, selectivity, and Faraday efficiency, as well as remarkable long-term stability. This research provides a promising electrocatalyst for biomass conversion.

APPLIED CATALYSIS A-GENERAL (2024)

Article Chemistry, Physical

Amorphous silica-alumina modified with silver as an efficient catalyst for vapor-phase dehydration of 1,3-butanediol to 1,3-butadiene

Yimin Li, Enggah Kurniawan, Fumiya Sato, Takayoshi Hara, Yasuhiro Yamada, Satoshi Sato

Summary: In this study, several silica-alumina catalysts modified with Ag were examined for the dehydration of 1,3-butanediol to 1,3-butadiene. Among them, an amorphous silica-alumina catalyst (SAL-3) modified with Ag showed the highest improvement in catalytic activity and stability when operated in H2 flow. The generation of reversible acid sites was found to be the reason behind the enhanced activity and stability of this Ag/SAL-3 catalyst. The effects of various parameters on the catalytic activity of Ag/SAL-3, such as reaction temperature, contact time, Ag content, and carrier gas, were investigated.

APPLIED CATALYSIS A-GENERAL (2024)