4.6 Article

H2 and COx generation from coal gasification catalyzed by a cost-effective iron catalyst

Journal

APPLIED CATALYSIS A-GENERAL
Volume 464, Issue -, Pages 207-217

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apcata.2013.05.038

Keywords

Catalysis; Coal gasification; Ferrous carbonate; Powder River Basin coal; Kinetics

Funding

  1. SIDCO Minerals Inc.
  2. Wyoming Clean Coal Program
  3. US Department of Energy

Ask authors/readers for more resources

The objective of this research is to study the effect and mechanism of FeCO3-based catalytic gasification of a low-sulfur sub-bituminous Wyodak coal from the Powder River Basin (PRB) of Wyoming. The catalytic effect was evaluated by comparing the gas compositions and carbon conversion kinetics with and without of FeCO3, which was realized by gasifying the coal with a fixed-bed laboratory gasifier within steam environment at atmospheric pressure. X-ray diffraction (XRD) and Mossbauer spectroscopy, and Fourier transform infrared spectroscopy (FTIR) were used to study the involved catalytic mechanism through characterization of the iron species and oxidation states of the catalyst and the composition of tar released during pyrolysis. Experimental results show that the catalyst is active in both pyrolysis and gasification steps, and can increase carbon conversion rate and reduce the activation energy of coal gasification. In addition, its oxidation states including magnetite (Fe3O4), wustite (FeO), and metallic iron, change with gasification condition. The research indicates that FeCO3 is a promising catalyst for coal gasification. Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Review Chemistry, Multidisciplinary

Emerging catalysts for the ambient synthesis of ethylene glycol from CO2 and its derivatives

Runping Ye, Yuan-Yuan Huang, Chong-Chong Chen, Yuan-Gen Yao, Maohong Fan, Zhangfeng Zhou

Summary: This article reviews various approaches to synthesize ethylene glycol (EG) from CO2 and its derivatives under mild conditions, including thermocatalysis, photocatalysis, and electrocatalysis. The coal-to-ethylene glycol technology, a mature thermal catalytic method, still faces challenges in industrialization. The recent progress in the development of coal-to-ethylene glycol technology is discussed, with a focus on achieving EG synthesis under mild conditions through strategies such as doping promoters, support modification, and catalyst design. The emerging technological progress of photocatalytic and electrocatalytic EG synthesis under ambient conditions is also introduced, highlighting the need to address issues for large-scale production. Future development issues and prospects for ambient EG synthesis using different catalytic routes are proposed.

CHEMICAL COMMUNICATIONS (2023)

Article Chemistry, Physical

Unraveling the Surface State Evolution of IrO2 in Ethane Chemical Looping Oxidative Dehydrogenation

Lulu Ping, Yuan Zhang, Baojun Wang, Maohong Fan, Lixia Ling, Riguang Zhang

Summary: Based on the advantages of ethane oxidative dehydrogenation and the challenge of low ethylene selectivity, chemical looping oxidative dehydrogenation (CL-ODH) over the IrO2 catalyst was studied. The study revealed that both S-IrO2 and R-IrO2 states exist for the IrO2 catalyst in the dehydrogenation and regeneration processes, and the optimal reaction conditions were determined. This research expands the understanding of ethane CL-ODH over metal oxide catalysts and provides valuable information for process optimization and catalyst development.

ACS CATALYSIS (2023)

Article Nanoscience & Nanotechnology

Ethane Dehydrogenation over the Core-Shell Pt-Based Alloy Catalysts: Driven by Engineering the Shell Composition and Thickness

Yuan Zhang, Baojun Wang, Maohong Fan, Lixia Ling, Riguang Zhang

Summary: In this study, a strategy to improve the catalytic performance of Pt-Sn alloy catalysts in ethane dehydrogenation (EDH) is proposed by engineering the shell surface structure and thickness. Density functional theory (DFT) calculations and kinetic Monte Carlo (kMC) simulations are used to understand the influences of catalyst surface structure, temperature, and reactant partial pressures. The results demonstrate that Pt@Pt3Sn catalysts generally have higher C2H4(g) activity and lower selectivity compared to Pt3Sn@Pt catalysts, due to their unique surface geometrical and electronic properties.

ACS APPLIED MATERIALS & INTERFACES (2023)

Article Nanoscience & Nanotechnology

Intelligent Chip-Controlled Smart Oxygen Electrodes for Constructing Rechargeable Zinc-Air Batteries with Excellent Energy Efficiency and Durability

Lulu Chai, Jinlu Song, Yanzhi Sun, Xiaoguang Liu, Xifei Li, Maohong Fan, Junqing Pan, Xueliang Sun

Summary: This study proposes a smart dual-oxygen electrode for high-specific-energy batteries, which addresses the issues of energy efficiency decay, wide charge-discharge gap, and catalyst peeling. The electrode consists of a switch control module, OER and ORR catalysis layers, and an ion conductive | electronic insulating membrane. The electrode shows an ultralow energy efficiency decay rate and enables a high energy efficiency in zinc-air batteries.

ACS APPLIED MATERIALS & INTERFACES (2023)

Article Chemistry, Physical

Syngas-to-C2 oxygenates over the inverse Mo6C4/Cu catalyst: Identifying the role of synergistic effect

Wantong Zhao, Xuebai Lan, Baojun Wang, Maohong Fan, Riguang Zhang

Summary: In this study, the inverse Mo6C4/Cu catalyst is modeled and predicted to promote C2 oxygenates formation in syngas transformation. The results show that the inverse Mo6C4/Cu catalyst greatly improves catalytic performance and facilitates C2 oxygenate production compared to previous catalysts. This is attributed to the synergistic effect between Mo6C4 cluster with Cu catalyst, which easily activates CO to produce CH2 monomer and facilitates CO insertion into CH2 to CH2CO.

APPLIED SURFACE SCIENCE (2023)

Article Energy & Fuels

Simultaneous removal of NO and SO2 by Fe(II)/peracetic acid oxidation system: Operating conditions, removal efficiency and removal mechanism

Kunpeng Li, Hui Hu, Maohong Fan, Mi Zhang, Zhongming Chen, Ruibin Lv, Hao Huang

Summary: An advanced oxidation process (AOPs) using Fe(II) activated peracetic acid (PAA) was investigated for the simultaneous removal of SO2 and NO from flue gas. The maximum removal efficiencies obtained were 92.3% for NO and 99.5% for SO2 under optimal conditions. Reactive oxidizing species and organic radicals were generated in the Fe(II)/PAA system, with organic radicals confirmed to be the major factors affecting NO oxidation. The main products of SO2 and NO removal were identified as SO42- and NO3-.
Review Chemistry, Multidisciplinary

Electrospun Carbon Nanofibers and Their Applications in Several Areas

Tongtong Wang, Zhe Chen, Weibo Gong, Fei Xu, Xin Song, Xin He, Maohong Fan

Summary: Carbon nanofibers (CNFs) have diverse applications in sensor manufacturing, electrochemical catalysis, and energy storage. Electrospinning is a powerful commercial large-scale production technique for CNFs due to its simplicity and efficiency. This paper discusses the working theory of manufacturing electrospun CNFs, current efforts in upgrading CNF properties, and the corresponding applications. Future development of CNFs is also discussed.

ACS OMEGA (2023)

Article Chemistry, Physical

C2H2 Semi-hydrogenation over S-modified PdM IMCs: Tuning catalytic performance by surface S Atom, and metal M type and ratio

Yueyue Wu, Xinyi Guo, Xiufeng Shi, Baojun Wang, Maohong Fan, Riguang Zhang

Summary: This study investigates the catalytic performance of a series of S-modified PdM IMCs with different M types (Cu, Ag and Au) and ratios (1: 1, 3: 1 and 1: 3) in C2H2 semi-hydrogenation using DFT calculations and microkinetic modeling. The results show that the catalytic performance strongly depends on the space region of metal active site and the electronic properties induced by S atoms and the M type and ratio. Only S/Pd1Ag1 and S/Pd1Au1 exhibit higher H2 dissociation activity, C2H4 selectivity and production activity, and can effectively inhibit the formation of green oil.

APPLIED SURFACE SCIENCE (2023)

Article Energy & Fuels

Rational design and reduction kinetics of efficient Ce-Co oxygen carriers for chemical looping reforming of methane

Weixiang Zhang, Lina Zhang, Sijia Pei, Jiarui Wang, Dawei Liu, Xiaoxun Ma, Maohong Fan, Long Xu

Summary: One of the most significant topics in chemical looping reforming technology is the design and preparation of appropriate oxygen carriers with high reactivity and excellent stability. This study focuses on the chemical looping reforming of methane using cobalt-doped Ce-based oxygen carriers synthesized via the solution combustion method with the assistance of coconut shell. The introduction of cobalt decreases the crystallite size, increases oxygen vacancy concentration and lattice oxygen mobility, and the addition of coconut shell further enhances these positive changes and the interaction between Ce and Co.
Article Biochemical Research Methods

Controlling the surface silanol density in capillary columns and planar silicon via the self-limiting, gas-phase deposition of tris(dimethylamino) methylsilane, and quantification of surface silanols after silanization by low energy ion scattering

Behnam Moeini, Joshua W. Pinder, Tahereh G. Avval, Collin Jacobsen, Hidde H. Brongersma, Stanislav Prusa, Pavel Babik, Elena Vanickova, Morris D. Argyle, Brian R. Strohmeier, Brian Jones, Daniel Shollenberger, David S. Bell, Matthew R. Linford

Summary: Surface silanols (Si-OH) are important on fused silica surfaces in chromatography. In this study, we modified the inner surface of a fused silica capillary column by using a gas-phase reactor and a small reactive silane (TDMAMS). We quantified the number of surface silanols on unmodified and TDMAMS-modified silicon and found a significant decrease after modification.

JOURNAL OF CHROMATOGRAPHY A (2023)

Editorial Material Multidisciplinary Sciences

Direct synthesis of urea from carbon dioxide and ammonia

Jie Ding, Runping Ye, Yanghe Fu, Yiming He, Ye Wu, Yulong Zhang, Qin Zhong, Harold H. Kung, Maohong Fan

Summary: Urea, a crucial nitrogen fertilizer, plays a vital role in meeting global food demand. However, its current production method is energy-intensive and environmentally unfriendly. In this commentary article, the authors propose strategies to address and overcome these challenges.

NATURE COMMUNICATIONS (2023)

Article Chemistry, Physical

Enabling Low-Temperature Methanol Activation via Lattice Oxygen Induced Cu-O-Cr Catalysis

Zhao Sun, Shufan Yu, Sam Toan, Rufat Abiev, Maohong Fan, Zhiqiang Sun

Summary: In this study, CuCr2O4-based catalytic oxygen carriers were designed for low-temperature methanol reforming. The activation of methanol at relatively low temperatures was achieved through the reinforcement of the Cu-O-Cr structure and the induction of highly reactive lattice oxygen. The hydrogen production rate was significantly increased by 53.2% with the application of CuCr2O4-based catalytic oxygen carriers. Furthermore, the Cu-O-Cr structure demonstrated satisfactory cyclic stability.

ACS CATALYSIS (2023)

Article Energy & Fuels

Enhancement of catalytic activity of PAl-NaX catalyst for side-chain alkylation of toluene with methanol: Effects of dehydrogenation component Cu

Chengda Li, Yueli Wen, Bin Wang, Maohong Fan, Wenlong Liu, Zheng Cui, Wei Huang

Summary: Activation and desorption of hydrogen in toluene methyl is the rate-limiting step for side-chain alkylation of toluene with methanol. In this study, two dehydrogenation strategies were employed to enhance catalytic performance by introducing Cu as a dehydrogenation component in PAl-NaX catalyst and adjusting the acid-base properties through varying NaOH loading. The relationship between the percentage of acid-base sites, low valence Cu species, and catalytic performance was investigated using various characterization techniques and ternary regression analysis. The results showed that Cu, especially low valence Cu species, promoted the selectivity of side-chain alkylation products to some extent, but base sites played a more critical role in enhancing selectivity.
Article Chemistry, Multidisciplinary

Boosting Low-Temperature CO2 Hydrogenation over Ni-based Catalysts by Tuning Strong Metal-Support Interactions

Runping Ye, Lixuan Ma, Xiaoling Hong, Tomas Ramirez Reina, Wenhao Luo, Liqun Kang, Gang Feng, Rongbin Zhang, Maohong Fan, Riguang Zhang, Jian Liu

Summary: This study presents a strategy to enhance the low-temperature CO2 activation through regulating the local electron density of active sites. An optimized Ni/ZrO2 catalyst exhibits excellent performance for CO2 methanation, with high CO2 conversion, CH4 selectivity, and stability, making it one of the best Ni-based catalysts for CO2 methanation to date.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2023)

Article Chemistry, Physical

C2H2 semi-hydrogenation over N-doped graphene supported diatomic metal catalysts: Unraveling the roles of metal type and its coordination environment in tuning catalytic performance

Xuebai Lan, Mifeng Xue, Baojun Wang, Maohong Fan, Riguang Zhang

Summary: This study investigates the performance of diatomic metal catalysts in the semi-hydrogenation of C2H2 by constructing different types of DACs and tuning their coordination environments. The results show that CoCu@N6V4-11, CoPd@N6V4-11, CoNi@N6V4-11, and CoPt@N6V4-11 DACs exhibit superior C2H4 selectivity, formation activity, and stability. Introducing a second metal can significantly improve C2H4 selectivity while maintaining high C2H4 formation activity.

APPLIED SURFACE SCIENCE (2023)

Article Chemistry, Physical

Enhancing oxygen reduction reaction with Pt-decorated Cu@Pd and high-entropy alloy catalysts: Insights from first-principles analysis of Pt arrangement

Ming-Yi Chen, Ngoc Thanh Thuy Tran, Ahmed Abubakar Alao, Wen-Dung Hsu

Summary: This study demonstrates the significance of surface Pt atom arrangement for the efficiency of ORR in PEMFCs and reveals the correlation between Pt-Pt average distance and O2 dissociation barrier. Furthermore, the study discovers a robust correlation between the level of the catalyst's d-band center and O2 adsorption energy. High-entropy alloy substrates provide potential for controlling Pt arrangement and O2 dissociation barrier.

APPLIED CATALYSIS A-GENERAL (2024)

Article Chemistry, Physical

MOF-catalyzed hydroxyalkylation-alkylation reaction for the controlled synthesis of furan oligomers

Eduardo C. Atayde Jr, Babasaheb M. Matsagar, Yu-Cheng Wang, Kevin C. -W. Wu

Summary: This study presents the first application of an acidic MOF, Sulfated MOF-808, in catalyzing the HAA reactions of furan oligomers for the production of biofuel precursors. The catalyst showed high yield, selectivity, and recyclability, making it versatile for different starting materials.

APPLIED CATALYSIS A-GENERAL (2024)

Article Chemistry, Physical

Dehydrogenation of ethylbenzene to styrene over magnesium-doped hematite catalysts

Maria do Carmo Rangel, Francieli Martins Mayer, Soraia Jesus de Oliveira, Sergio Gustavo Marchetti, Fabricio Luiz Faita, Doris Ruiz, Giovanni Saboia, Mariana Kieling Dagostini, Jonder Morais, Maria do Carmo Martins Alves

Summary: This study developed a new catalyst by investigating the effect of magnesium on the catalytic properties of hematite in ethylbenzene dehydrogenation. The catalyst showed important differences in activity, selectivity, and stability, making it a promising candidate for commercial applications.

APPLIED CATALYSIS A-GENERAL (2024)

Article Chemistry, Physical

Selective oxidation of methacrolein to methacrylic acid over CsH3PMo11VO40 with structural defects

Yanjun Li, Qian Wang, Hui Tian, Mingyuan Zhu, Yuanyuan Liu

Summary: A novel strategy using microwave-assisted precipitation was proposed to prepare defective CsH3PMo11VO40 catalyst for the oxidation of methacrolein to methacrylic acid. Microwave treatment accelerates crystallization, increases vanadyl species content, and forms defective Keggin structures, thereby enhancing the oxidation capacity of the catalyst.

APPLIED CATALYSIS A-GENERAL (2024)

Article Chemistry, Physical

Novel acidic ionic liquid [BEMIM][HSO4]: A highly efficient and recyclable catalyst for the synthesis of bis-indolyl methane derivatives

Rajeshwari Athavale, Sailee Gardi, Fatima Choudhary, Dayanand Patil, Nandkishor Chandan, Paresh More

Summary: In this study, a novel acidic ionic liquid catalyst was prepared and used for the synthesis of bis-indolyl methane derivatives. The catalyst exhibited short reaction times, easy purification, and reusability.

APPLIED CATALYSIS A-GENERAL (2024)

Article Chemistry, Physical

The chemical state and Cu plus stability for three-way catalytic performance of Cu-added Al2O3 catalysts

Masatomo Hattori, Takato Hattori, Masakuni Ozawa

Summary: Cu-added gamma-Al2O3 catalysts were prepared with varying Cu loadings and the effects of copper oxidation states on catalytic activity were investigated. The results showed that the addition of copper increased the catalyst activity, but excessive copper loading decreased catalytic activity. XRD and TEM analysis indicated the formation of a solid solution of copper oxide species on the surface of gamma-Al2O3. XAS and TPR data demonstrated variations in copper oxidation states among the catalysts.

APPLIED CATALYSIS A-GENERAL (2024)

Article Chemistry, Physical

Enhanced oxygen reduction catalytic performance of PtNi alloy through modulating metal-support interaction

Liwei Fang, Shiyang Niu, Shengsen Wang, Yiqing Lu, Yuanhui Cheng

Summary: In this study, PtNi alloy on nitrogen-doped carbon and SnO2 dual-support was designed to modulate the metal-support interaction, resulting in improved catalytic activity and stability for oxygen reduction reaction. The SnO2/PtNi/NC catalyst exhibited a strongly coupled interface, enhanced electron transfer, and higher half-wave potential compared to PtNi/NC and commercial Pt/C.

APPLIED CATALYSIS A-GENERAL (2024)

Article Chemistry, Physical

Selective hydrogenation of carbon dioxide to light hydrocarbons over ZnZrOX/H-MFI composite catalyst with long-term stability

Shohei Harada, Duanxing Li, Kenta Iyoki, Masaru Ogura

Summary: This study investigates the catalytic performance of a composite catalyst composed of ZnZrOX and H-zeolite for the hydrogenation of CO2. The deactivation of the composite catalyst is influenced by ion exchange of Zn2+ and/or coke, with their effects differing based on the zeolite structure. Separating the grains of the composite catalyst can prevent deactivation.

APPLIED CATALYSIS A-GENERAL (2024)

Article Chemistry, Physical

CO2 hydrogenation to methanol over ceria-zirconia NiGa alloy catalysts

Laura Proano, Christopher W. Jones

Summary: In this study, NiGa alloy particles supported on CeO2, ZrO2, and ZrO2-CeO2 solid solutions were prepared and characterized. The nature of the support was found to have a significant influence on the catalyst's activity and selectivity, with the crystalline structure of ZrO2 having the greatest impact. Pure ZrO2 showed the highest methanol selectivity and CO2 conversion at high Zr:Ce ratios. In equimolar and Ce-rich conditions, basic sites and oxygen vacancies were found to be the key parameters affecting methanol production.

APPLIED CATALYSIS A-GENERAL (2024)

Article Chemistry, Physical

Reductive amination of 1,6-hexanediol with a modified Ru/Al2O3 catalyst

Liyan Zhang, Yinze Yang, Leilei Zhou, Fengyu Zhao, Haiyang Cheng

Summary: 1,6-Hexamethylenediamine was successfully synthesized via the reductive amination of 1,6-hexanediol using a Ru/PRL(x)-Al2O3 catalyst. The highly dispersed and anchored Ru species, formed by 1,10-phenanthroline (PRL), played a crucial role in the catalytic reaction. The formation of new acid-base pairs, electron deficient Ru species, and smaller nanoparticles contributed to the improved catalytic performances of the Ru/PRL-Al2O3 catalyst.

APPLIED CATALYSIS A-GENERAL (2024)

Article Chemistry, Physical

Longevity increase of an impregnated Ni/CeO2-Al2O3 dry reforming catalyst by indium

Anita Horvath, Miklos Nemeth, Andrea Beck, Gyorgy Safran, Valeria La Parola, Leonarda Francesca Liotta, Gregor Zerjav, Matevz Roskaric, Albin Pintar

Summary: This study investigates the catalytic and structural changes caused by the addition of 0.25 wt% indium in a 3% Ni/CeO2-Al2O3 catalyst prepared by impregnation method. The results show that the addition of indium can decrease the activity of the catalyst, but it improves its stability and reduces coking.

APPLIED CATALYSIS A-GENERAL (2024)

Article Chemistry, Physical

Harnessing reactive hydrogen species via H2O2 photolysis for reduction of CO2 to CH3OH using CaIn2S4@ZnMOF photocatalyst

Ankush Kularkar, Vaibhav Vilas Khedekar, Sachin D. Chaudhari, Mudavath Ravi, Sadhana S. Rayalu, Penumaka Nagababu

Summary: Efficiently addressing the challenges of photocatalytic CO2 reduction to CH3OH is crucial. This study developed Zn-BTC MOF and its composites with CaIn2S4, achieving highly efficient and robust photocatalytic CO2 reduction to CH3OH under ambient conditions, using H2O2 as the hydrogen source. Among the composites, ZMCIS4 demonstrated excellent performance with a CH3OH evolution of 49100 μmol/g.cat and a quantum efficiency of approximately 78.41%. The enhanced performance was attributed to the production of nascent hydrogen atoms (H center dot) through the photo-splitting of H2O2 on the ZMCIS surface.

APPLIED CATALYSIS A-GENERAL (2024)

Article Chemistry, Physical

Numerous active sites in self-supporting Co3O4 nanobelt array for boosted and stabilized 5-hydroxymethylfurfural electro-oxidation

Dan Liu, Yudong Li, Chengyu Wang, Haiyue Yang, Rong Wang, Shujun Li, Xiaohui Yang

Summary: In this study, a self-supporting three-dimensional porous Co3O4 nanobelt array decorated on nickel foam (P-Co3O4 -NBA@NF) electrode with numerous active sites was successfully constructed for the oxidation of 5-Hydroxymethylfurfural (HMF) to 2,5-furan dicarboxylic acid (FDCA). The P-Co3O4 -NBA@NF electrode demonstrated high conversion efficiency, selectivity, and Faraday efficiency, as well as remarkable long-term stability. This research provides a promising electrocatalyst for biomass conversion.

APPLIED CATALYSIS A-GENERAL (2024)

Article Chemistry, Physical

Amorphous silica-alumina modified with silver as an efficient catalyst for vapor-phase dehydration of 1,3-butanediol to 1,3-butadiene

Yimin Li, Enggah Kurniawan, Fumiya Sato, Takayoshi Hara, Yasuhiro Yamada, Satoshi Sato

Summary: In this study, several silica-alumina catalysts modified with Ag were examined for the dehydration of 1,3-butanediol to 1,3-butadiene. Among them, an amorphous silica-alumina catalyst (SAL-3) modified with Ag showed the highest improvement in catalytic activity and stability when operated in H2 flow. The generation of reversible acid sites was found to be the reason behind the enhanced activity and stability of this Ag/SAL-3 catalyst. The effects of various parameters on the catalytic activity of Ag/SAL-3, such as reaction temperature, contact time, Ag content, and carrier gas, were investigated.

APPLIED CATALYSIS A-GENERAL (2024)